These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
290 related items for PubMed ID: 21879759
1. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. Dregely D, Hentschel M, Giessen H. ACS Nano; 2011 Oct 25; 5(10):8202-11. PubMed ID: 21879759 [Abstract] [Full Text] [Related]
2. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. Liu SD, Yang Z, Liu RP, Li XY. ACS Nano; 2012 Jul 24; 6(7):6260-71. PubMed ID: 22680404 [Abstract] [Full Text] [Related]
3. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation. Liu SD, Leong ES, Li GC, Hou Y, Deng J, Teng JH, Ong HC, Lei DY. ACS Nano; 2016 Jan 26; 10(1):1442-53. PubMed ID: 26727133 [Abstract] [Full Text] [Related]
4. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA. ACS Nano; 2009 Mar 24; 3(3):643-52. PubMed ID: 19309172 [Abstract] [Full Text] [Related]
5. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GA, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA. ACS Nano; 2010 Mar 23; 4(3):1664-70. PubMed ID: 20155967 [Abstract] [Full Text] [Related]
6. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Chong KE, Hopkins B, Staude I, Miroshnichenko AE, Dominguez J, Decker M, Neshev DN, Brener I, Kivshar YS. Small; 2014 May 28; 10(10):1985-90. PubMed ID: 24616191 [Abstract] [Full Text] [Related]
7. Mechanisms of Fano resonances in coupled plasmonic systems. Lovera A, Gallinet B, Nordlander P, Martin OJ. ACS Nano; 2013 May 28; 7(5):4527-36. PubMed ID: 23614396 [Abstract] [Full Text] [Related]
8. Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells. Chen J, Shen Q, Chen Z, Wang Q, Tang C, Wang Z. J Chem Phys; 2012 Jun 07; 136(21):214703. PubMed ID: 22697562 [Abstract] [Full Text] [Related]
9. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling. Chen Z, Zhang S, Chen Y, Liu Y, Li P, Wang Z, Zhu X, Bi K, Duan H. Nanoscale; 2020 May 07; 12(17):9776-9785. PubMed ID: 32324182 [Abstract] [Full Text] [Related]
10. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. Fu YH, Zhang JB, Yu YF, Luk'yanchuk B. ACS Nano; 2012 Jun 26; 6(6):5130-7. PubMed ID: 22577794 [Abstract] [Full Text] [Related]
11. Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Zhan Y, Lei DY, Li X, Maier SA. Nanoscale; 2014 May 07; 6(9):4705-15. PubMed ID: 24658052 [Abstract] [Full Text] [Related]
12. Dark and bright localized surface plasmons in nanocrosses. Verellen N, Van Dorpe P, Vercruysse D, Vandenbosch GA, Moshchalkov VV. Opt Express; 2011 Jun 06; 19(12):11034-51. PubMed ID: 21716332 [Abstract] [Full Text] [Related]
13. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. Zhang Q, Wen X, Li G, Ruan Q, Wang J, Xiong Q. ACS Nano; 2013 Dec 23; 7(12):11071-8. PubMed ID: 24215162 [Abstract] [Full Text] [Related]
14. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances. Zhang S, Zhu X, Xiao W, Shi H, Wang Y, Chen Z, Chen Y, Sun K, Muskens OL, De Groot CH, Liu SD, Duan H. Nanotechnology; 2020 Aug 07; 31(32):325202. PubMed ID: 32340011 [Abstract] [Full Text] [Related]
15. From Fano-like interference to superscattering with a single metallic nanodisk. Wan W, Zheng W, Chen Y, Liu Z. Nanoscale; 2014 Aug 07; 6(15):9093-102. PubMed ID: 24975582 [Abstract] [Full Text] [Related]
16. Relation between near-field and far-field properties of plasmonic Fano resonances. Gallinet B, Martin OJ. Opt Express; 2011 Oct 24; 19(22):22167-75. PubMed ID: 22109059 [Abstract] [Full Text] [Related]
17. Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances. Zhang Q, Xiao JJ. Opt Lett; 2013 Oct 15; 38(20):4240-3. PubMed ID: 24321969 [Abstract] [Full Text] [Related]
18. Fano resonances in plasmonic nanoparticle aggregates. Mirin NA, Bao K, Nordlander P. J Phys Chem A; 2009 Apr 23; 113(16):4028-34. PubMed ID: 19371111 [Abstract] [Full Text] [Related]
19. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances. Ahmadivand A, Pala N. Appl Spectrosc; 2015 Apr 23; 69(2):277-86. PubMed ID: 25587712 [Abstract] [Full Text] [Related]
20. Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ. Nano Lett; 2010 Aug 11; 10(8):3184-9. PubMed ID: 20698635 [Abstract] [Full Text] [Related] Page: [Next] [New Search]