These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
466 related items for PubMed ID: 21879972
1. Assessment of repeatability of a wireless, inertial sensor-based lameness evaluation system for horses. Keegan KG, Kramer J, Yonezawa Y, Maki H, Pai PF, Dent EV, Kellerman TE, Wilson DA, Reed SK. Am J Vet Res; 2011 Sep; 72(9):1156-63. PubMed ID: 21879972 [Abstract] [Full Text] [Related]
2. Comparison of an inertial sensor system with a stationary force plate for evaluation of horses with bilateral forelimb lameness. Keegan KG, MacAllister CG, Wilson DA, Gedon CA, Kramer J, Yonezawa Y, Maki H, Pai PF. Am J Vet Res; 2012 Mar; 73(3):368-74. PubMed ID: 22369528 [Abstract] [Full Text] [Related]
3. Comparison of a body-mounted inertial sensor system-based method with subjective evaluation for detection of lameness in horses. Keegan KG, Wilson DA, Kramer J, Reed SK, Yonezawa Y, Maki H, Pai PF, Lopes MA. Am J Vet Res; 2013 Jan; 74(1):17-24. PubMed ID: 23270341 [Abstract] [Full Text] [Related]
4. Use of a wireless, inertial sensor-based system to objectively evaluate flexion tests in the horse. Marshall JF, Lund DG, Voute LC. Equine Vet J Suppl; 2012 Dec; (43):8-11. PubMed ID: 23447870 [Abstract] [Full Text] [Related]
5. Comparison of an inertial sensor system of lameness quantification with subjective lameness evaluation. McCracken MJ, Kramer J, Keegan KG, Lopes M, Wilson DA, Reed SK, LaCarrubba A, Rasch M. Equine Vet J; 2012 Nov; 44(6):652-6. PubMed ID: 22563674 [Abstract] [Full Text] [Related]
6. An attempt to detect lameness in galloping horses by use of body-mounted inertial sensors. Lopes MA, Dearo AC, Lee A, Reed SK, Kramer J, Pai PF, Yonezawa Y, Maki H, Morgan TL, Wilson DA, Keegan KG. Am J Vet Res; 2016 Oct; 77(10):1121-31. PubMed ID: 27668584 [Abstract] [Full Text] [Related]
7. Estimation of vertical tuber coxae movement in the horse from a single inertial measurement unit. Pfau T, Starke SD, Tröster S, Roepstorff L. Vet J; 2013 Nov; 198(2):498-503. PubMed ID: 24268482 [Abstract] [Full Text] [Related]
8. Proximal hindlimb flexion in the horse: effect on movement symmetry and implications for defining soundness. Starke SD, Willems E, Head M, May SA, Pfau T. Equine Vet J; 2012 Nov; 44(6):657-63. PubMed ID: 22563757 [Abstract] [Full Text] [Related]
9. Associations of force plate and body-mounted inertial sensor measurements for identification of hind limb lameness in horses. Bell RP, Reed SK, Schoonover MJ, Whitfield CT, Yonezawa Y, Maki H, Pai PF, Keegan KG. Am J Vet Res; 2016 Apr; 77(4):337-45. PubMed ID: 27027831 [Abstract] [Full Text] [Related]
10. A curve-fitting technique for evaluating head movement to measure forelimb lameness in horses. Keegan KG, Pai PF, Wilson DA. Biomed Sci Instrum; 2000 Apr; 36():239-44. PubMed ID: 10834239 [Abstract] [Full Text] [Related]
11. Effect of lungeing on head and pelvic movement asymmetry in horses with induced lameness. Rhodin M, Pfau T, Roepstorff L, Egenvall A. Vet J; 2013 Dec; 198 Suppl 1():e39-45. PubMed ID: 24140227 [Abstract] [Full Text] [Related]
12. Evaluation of a sensor-based system of motion analysis for detection and quantification of forelimb and hind limb lameness in horses. Keegan KG, Yonezawa Y, Pai PF, Wilson DA, Kramer J. Am J Vet Res; 2004 May; 65(5):665-70. PubMed ID: 15141889 [Abstract] [Full Text] [Related]
13. Vertical movement symmetry of the withers in horses with induced forelimb and hindlimb lameness at trot. Rhodin M, Persson-Sjodin E, Egenvall A, Serra Bragança FM, Pfau T, Roepstorff L, Weishaupt MA, Thomsen MH, van Weeren PR, Hernlund E. Equine Vet J; 2018 Nov; 50(6):818-824. PubMed ID: 29658147 [Abstract] [Full Text] [Related]
14. Objective determination of pelvic movement during hind limb lameness by use of a signal decomposition method and pelvic height differences. Kramer J, Keegan KG, Kelmer G, Wilson DA. Am J Vet Res; 2004 Jun; 65(6):741-7. PubMed ID: 15198212 [Abstract] [Full Text] [Related]
15. Accelerometer-based system for the detection of lameness in horses. Keegan KG, Yonezawa Y, Pai PF, Wilson DA. Biomed Sci Instrum; 2002 Jun; 38():107-12. PubMed ID: 12085585 [Abstract] [Full Text] [Related]
16. Computer-assisted kinematic evaluation of induced compensatory movements resembling lameness in horses trotting on a treadmill. Kelmer G, Keegan KG, Kramer J, Wilson DA, Pai FP, Singh P. Am J Vet Res; 2005 Apr; 66(4):646-55. PubMed ID: 15900946 [Abstract] [Full Text] [Related]
17. Identifying optimal parameters for quantification of changes in pelvic movement symmetry as a response to diagnostic analgesia in the hindlimbs of horses. Pfau T, Spicer-Jenkins C, Smith RK, Bolt DM, Fiske-Jackson A, Witte TH. Equine Vet J; 2014 Nov; 46(6):759-63. PubMed ID: 24329685 [Abstract] [Full Text] [Related]
18. Vertical head and trunk movement adaptations of sound horses trotting in a circle on a hard surface. Starke SD, Willems E, May SA, Pfau T. Vet J; 2012 Jul; 193(1):73-80. PubMed ID: 22104508 [Abstract] [Full Text] [Related]
19. Effect of sedation on fore- and hindlimb lameness evaluation using body-mounted inertial sensors. Rettig MJ, Leelamankong P, Rungsri P, Lischer CJ. Equine Vet J; 2016 Sep; 48(5):603-7. PubMed ID: 26032237 [Abstract] [Full Text] [Related]
20. Objective assessment of the compensatory effect of clinical hind limb lameness in horses: 37 cases (2011-2014). Maliye S, Marshall JF. J Am Vet Med Assoc; 2016 Oct 15; 249(8):940-944. PubMed ID: 27700267 [Abstract] [Full Text] [Related] Page: [Next] [New Search]