These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 21887423

  • 1. Free energy calculations for a flexible water model.
    Habershon S, Manolopoulos DE.
    Phys Chem Chem Phys; 2011 Nov 28; 13(44):19714-27. PubMed ID: 21887423
    [Abstract] [Full Text] [Related]

  • 2. The phase diagram of ice Ih, II, and III: a quasi-harmonic study.
    Ramírez R, Neuerburg N, Herrero CP.
    J Chem Phys; 2012 Oct 07; 137(13):134503. PubMed ID: 23039603
    [Abstract] [Full Text] [Related]

  • 3. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL, Conde MM, Noya EG, Vega C.
    Phys Chem Chem Phys; 2009 Jan 21; 11(3):543-55. PubMed ID: 19283272
    [Abstract] [Full Text] [Related]

  • 4. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.
    Horn HW, Swope WC, Pitera JW.
    J Chem Phys; 2005 Nov 15; 123(19):194504. PubMed ID: 16321097
    [Abstract] [Full Text] [Related]

  • 5. The phase diagram of ice: a quasi-harmonic study based on a flexible water model.
    Ramírez R, Neuerburg N, Herrero CP.
    J Chem Phys; 2013 Aug 28; 139(8):084503. PubMed ID: 24007014
    [Abstract] [Full Text] [Related]

  • 6. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R, Herrero CP.
    J Chem Phys; 2010 Oct 14; 133(14):144511. PubMed ID: 20950021
    [Abstract] [Full Text] [Related]

  • 7. Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited.
    Conde MM, Gonzalez MA, Abascal JL, Vega C.
    J Chem Phys; 2013 Oct 21; 139(15):154505. PubMed ID: 24160525
    [Abstract] [Full Text] [Related]

  • 8. Constrained fluid lambda-integration: constructing a reversible thermodynamic path between the solid and liquid state.
    Grochola G.
    J Chem Phys; 2004 Feb 01; 120(5):2122-6. PubMed ID: 15268350
    [Abstract] [Full Text] [Related]

  • 9. Computing the free energy of molecular solids by the Einstein molecule approach: ices XIII and XIV, hard-dumbbells and a patchy model of proteins.
    Noya EG, Conde MM, Vega C.
    J Chem Phys; 2008 Sep 14; 129(10):104704. PubMed ID: 19044935
    [Abstract] [Full Text] [Related]

  • 10. Melting point and phase diagram of methanol as obtained from computer simulations of the OPLS model.
    Gonzalez Salgado D, Vega C.
    J Chem Phys; 2010 Mar 07; 132(9):094505. PubMed ID: 20210403
    [Abstract] [Full Text] [Related]

  • 11. Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration.
    Leroy F, Dos Santos DJ, Müller-Plathe F.
    Macromol Rapid Commun; 2009 May 19; 30(9-10):864-70. PubMed ID: 21706670
    [Abstract] [Full Text] [Related]

  • 12. Nuclear quantum effects in water clusters: the role of the molecular flexibility.
    González BS, Noya EG, Vega C, Sesé LM.
    J Phys Chem B; 2010 Feb 25; 114(7):2484-92. PubMed ID: 20121175
    [Abstract] [Full Text] [Related]

  • 13. Competing quantum effects in the dynamics of a flexible water model.
    Habershon S, Markland TE, Manolopoulos DE.
    J Chem Phys; 2009 Jul 14; 131(2):024501. PubMed ID: 19603998
    [Abstract] [Full Text] [Related]

  • 14. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.
    Jensen L, Thomsen K, von Solms N, Wierzchowski S, Walsh MR, Koh CA, Sloan ED, Wu DT, Sum AK.
    J Phys Chem B; 2010 May 06; 114(17):5775-82. PubMed ID: 20392117
    [Abstract] [Full Text] [Related]

  • 15. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM, Vega C.
    J Chem Phys; 2010 Aug 14; 133(6):064507. PubMed ID: 20707575
    [Abstract] [Full Text] [Related]

  • 16. A flexible model for water based on TIP4P/2005.
    González MA, Abascal JL.
    J Chem Phys; 2011 Dec 14; 135(22):224516. PubMed ID: 22168712
    [Abstract] [Full Text] [Related]

  • 17. Classical and quantum gibbs free energies and phase behavior of water using simulation and cell theory.
    Klefas-Stennett M, Henchman RH.
    J Phys Chem B; 2008 Aug 14; 112(32):9769-76. PubMed ID: 18637683
    [Abstract] [Full Text] [Related]

  • 18. Plastic crystal phases of simple water models.
    Aragones JL, Vega C.
    J Chem Phys; 2009 Jun 28; 130(24):244504. PubMed ID: 19566163
    [Abstract] [Full Text] [Related]

  • 19. Free energy of liquid water from a computer simulation via cell theory.
    Henchman RH.
    J Chem Phys; 2007 Feb 14; 126(6):064504. PubMed ID: 17313226
    [Abstract] [Full Text] [Related]

  • 20. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C, Abascal JL, Nezbeda I.
    J Chem Phys; 2006 Jul 21; 125(3):34503. PubMed ID: 16863358
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.