These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


934 related items for PubMed ID: 21888438

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Ab initio potential energy surfaces for NH((3)sigma(-))-NH((3)sigma(-)) with analytical long range.
    Janssen LM, Groenenboom GC, van der Avoird A, Zuchowski PS, Podeszwa R.
    J Chem Phys; 2009 Dec 14; 131(22):224314. PubMed ID: 20001043
    [Abstract] [Full Text] [Related]

  • 23. Dissociative dynamics of spin-triplet and spin-singlet O2 on Ag(100).
    Alducin M, Busnengo HF, Díez Muiño R.
    J Chem Phys; 2008 Dec 14; 129(22):224702. PubMed ID: 19071934
    [Abstract] [Full Text] [Related]

  • 24. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J, Vlachos DG.
    J Chem Phys; 2007 Oct 21; 127(15):154716. PubMed ID: 17949200
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).
    Lau KC, Chang YC, Shi X, Ng CY.
    J Chem Phys; 2010 Sep 21; 133(11):114304. PubMed ID: 20866136
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations.
    Malshe M, Narulkar R, Raff LM, Hagan M, Bukkapatnam S, Agrawal PM, Komanduri R.
    J Chem Phys; 2009 May 14; 130(18):184102. PubMed ID: 19449903
    [Abstract] [Full Text] [Related]

  • 31. Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO.
    Rössler N, Kotsis K, Staemmler V.
    Phys Chem Chem Phys; 2006 Feb 14; 8(6):697-706. PubMed ID: 16482309
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Exact quantum scattering study of the Ne+H(2) (+) reaction on a new ab initio potential energy surface.
    Lv SJ, Zhang PY, Han KL, He GZ.
    J Chem Phys; 2010 Jan 07; 132(1):014303. PubMed ID: 20078157
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Experimental and theoretical investigations of the inelastic and reactive scattering dynamics of O(3p) + D2.
    Garton DJ, Brunsvold AL, Minton TK, Troya D, Maiti B, Schatz GC.
    J Phys Chem A; 2006 Feb 02; 110(4):1327-41. PubMed ID: 16435793
    [Abstract] [Full Text] [Related]

  • 38. State-to-state reaction probabilities for the H+O2(v,j)-->O+OH(v',j') reaction on three potential energy surfaces.
    Hankel M, Smith SC, Meijer AJ.
    J Chem Phys; 2007 Aug 14; 127(6):064316. PubMed ID: 17705605
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Accurate ab initio intermolecular potential energy surface for the quintet state of the O2(3Sigma(g)-)-O2(3Sigma(g)-) dimer.
    Bartolomei M, Carmona-Novillo E, Hernández MI, Campos-Martínez J, Hernandez-Lamoneda R.
    J Chem Phys; 2008 Jun 07; 128(21):214304. PubMed ID: 18537419
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 47.