These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 21889796

  • 1. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function.
    Marelli B, Ghezzi CE, Mohn D, Stark WJ, Barralet JE, Boccaccini AR, Nazhat SN.
    Biomaterials; 2011 Dec; 32(34):8915-26. PubMed ID: 21889796
    [Abstract] [Full Text] [Related]

  • 2. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE, Marelli B, Chicatun F, McKee MD, Nazhat SN.
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [Abstract] [Full Text] [Related]

  • 3. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection.
    Miri AK, Muja N, Kamranpour NO, Lepry WC, Boccaccini AR, Clarke SA, Nazhat SN.
    Biomaterials; 2016 Apr; 85():128-41. PubMed ID: 26871889
    [Abstract] [Full Text] [Related]

  • 4. Osteoid-mimicking dense collagen/chitosan hybrid gels.
    Chicatun F, Pedraza CE, Ghezzi CE, Marelli B, Kaartinen MT, McKee MD, Nazhat SN.
    Biomacromolecules; 2011 Aug 08; 12(8):2946-56. PubMed ID: 21661759
    [Abstract] [Full Text] [Related]

  • 5. Saos-2 cell-mediated mineralization on collagen gels: Effect of densification and bioglass incorporation.
    Liu G, Pastakia M, Fenn MB, Kishore V.
    J Biomed Mater Res A; 2016 May 08; 104(5):1121-34. PubMed ID: 26750473
    [Abstract] [Full Text] [Related]

  • 6. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Krishnamra N, Tang IM.
    Mater Sci Eng C Mater Biol Appl; 2014 May 01; 38():63-72. PubMed ID: 24656353
    [Abstract] [Full Text] [Related]

  • 7. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE, Muja N, Marelli B, Nazhat SN.
    Biomaterials; 2011 Jul 01; 32(21):4761-72. PubMed ID: 21514662
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Acellular dense collagen-S53P4 bioactive glass hybrid gel scaffolds form more bone than stem cell delivered constructs.
    Park H, Collignon AM, Lepry WC, Ramirez-GarciaLuna JL, Rosenzweig DH, Chaussain C, Nazhat SN.
    Mater Sci Eng C Mater Biol Appl; 2021 Jan 01; 120():111743. PubMed ID: 33545885
    [Abstract] [Full Text] [Related]

  • 10. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering.
    Yu HS, Jin GZ, Won JE, Wall I, Kim HW.
    J Biomed Mater Res A; 2012 Sep 01; 100(9):2431-40. PubMed ID: 22566478
    [Abstract] [Full Text] [Related]

  • 11. Three-dimensional mineralization of dense nanofibrillar collagen-bioglass hybrid scaffolds.
    Marelli B, Ghezzi CE, Barralet JE, Boccaccini AR, Nazhat SN.
    Biomacromolecules; 2010 Jun 14; 11(6):1470-9. PubMed ID: 20443577
    [Abstract] [Full Text] [Related]

  • 12. Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold.
    Keogh MB, O'Brien FJ, Daly JS.
    Acta Biomater; 2010 Nov 14; 6(11):4305-13. PubMed ID: 20570642
    [Abstract] [Full Text] [Related]

  • 13. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC, Mikael PE, Nukavarapu SP.
    J Tissue Eng Regen Med; 2014 Feb 14; 8(2):131-42. PubMed ID: 22689304
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT.
    J Biomed Mater Res A; 2010 Jun 01; 93(3):1193-208. PubMed ID: 19777575
    [Abstract] [Full Text] [Related]

  • 17. Osteoblastic behavior of human bone marrow cells cultured over adsorbed collagen layer, over surface of collagen gels, and inside collagen gels.
    Fernandes LF, Costa MA, Fernandes MH, Tomás H.
    Connect Tissue Res; 2009 Jun 01; 50(5):336-46. PubMed ID: 19863393
    [Abstract] [Full Text] [Related]

  • 18. Compressed collagen gel as the scaffold for skin engineering.
    Hu K, Shi H, Zhu J, Deng D, Zhou G, Zhang W, Cao Y, Liu W.
    Biomed Microdevices; 2010 Aug 01; 12(4):627-35. PubMed ID: 20300856
    [Abstract] [Full Text] [Related]

  • 19. Osteoblast activity on collagen-GAG scaffolds is affected by collagen and GAG concentrations.
    Tierney CM, Jaasma MJ, O'Brien FJ.
    J Biomed Mater Res A; 2009 Oct 01; 91(1):92-101. PubMed ID: 18767061
    [Abstract] [Full Text] [Related]

  • 20. Silk fibroin derived polypeptide-induced biomineralization of collagen.
    Marelli B, Ghezzi CE, Alessandrino A, Barralet JE, Freddi G, Nazhat SN.
    Biomaterials; 2012 Jan 01; 33(1):102-8. PubMed ID: 21982293
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.