These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
364 related items for PubMed ID: 21903677
1. Evolution and functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine diatoms. Allen AE, Moustafa A, Montsant A, Eckert A, Kroth PG, Bowler C. Mol Biol Evol; 2012 Jan; 29(1):367-79. PubMed ID: 21903677 [Abstract] [Full Text] [Related]
2. Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Patron NJ, Rogers MB, Keeling PJ. Eukaryot Cell; 2004 Oct; 3(5):1169-75. PubMed ID: 15470245 [Abstract] [Full Text] [Related]
3. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y. Proc Natl Acad Sci U S A; 2016 Aug 30; 113(35):9828-33. PubMed ID: 27531955 [Abstract] [Full Text] [Related]
4. The peculiar distribution of class I and class II aldolases in diatoms and in red algae. Kroth PG, Schroers Y, Kilian O. Curr Genet; 2005 Dec 30; 48(6):389-400. PubMed ID: 16273368 [Abstract] [Full Text] [Related]
6. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. Coesel S, Oborník M, Varela J, Falciatore A, Bowler C. PLoS One; 2008 Aug 06; 3(8):e2896. PubMed ID: 18682837 [Abstract] [Full Text] [Related]
7. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C. BMC Genomics; 2009 Oct 20; 10():484. PubMed ID: 19843329 [Abstract] [Full Text] [Related]
9. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. Sturm S, Engelken J, Gruber A, Vugrinec S, Kroth PG, Adamska I, Lavaud J. BMC Evol Biol; 2013 Jul 30; 13():159. PubMed ID: 23899289 [Abstract] [Full Text] [Related]
10. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D. Science; 2009 Jun 26; 324(5935):1724-6. PubMed ID: 19556510 [Abstract] [Full Text] [Related]
12. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content. Shen C, Dupont CL, Hopkinson BM. J Exp Bot; 2017 Jun 01; 68(14):3937-3948. PubMed ID: 28510761 [Abstract] [Full Text] [Related]
13. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J. Protist; 2007 Jul 01; 158(3):263-76. PubMed ID: 17368985 [Abstract] [Full Text] [Related]
14. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu CA. Gene; 2012 Jul 15; 503(1):65-74. PubMed ID: 22561114 [Abstract] [Full Text] [Related]
18. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. Moog D, Nozawa A, Tozawa Y, Kamikawa R. Sci Rep; 2020 Jan 24; 10(1):1167. PubMed ID: 31980711 [Abstract] [Full Text] [Related]
19. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Cavalier-Smith T. Philos Trans R Soc Lond B Biol Sci; 2003 Jan 29; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921 [Abstract] [Full Text] [Related]