These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Controlling the dimensions of amyloid fibrils: toward homogenous components for bionanotechnology. Domigan LJ, Healy JP, Meade SJ, Blaikie RJ, Gerrard JA. Biopolymers; 2012 Feb 09; 97(2):123-33. PubMed ID: 21858783 [Abstract] [Full Text] [Related]
7. Secondary nucleation and accessible surface in insulin amyloid fibril formation. Foderà V, Librizzi F, Groenning M, van de Weert M, Leone M. J Phys Chem B; 2008 Mar 27; 112(12):3853-8. PubMed ID: 18311965 [Abstract] [Full Text] [Related]
8. Self-folding and aggregation of amyloid nanofibrils. Paparcone R, Cranford SW, Buehler MJ. Nanoscale; 2011 Apr 27; 3(4):1748-55. PubMed ID: 21347488 [Abstract] [Full Text] [Related]
9. [Investigation of the kinetics of insulin amyloid fibrils formation]. Sulatskaia AI, Volova EA, Komissarchik IaIu, Snigirevskaia ES, Maskevich AA, Drobchenko EA, Kuznetsova IM, Turoverov KK. Tsitologiia; 2013 Apr 27; 55(11):809-14. PubMed ID: 25509136 [Abstract] [Full Text] [Related]
10. Asymmetric amyloid fibril elongation: a new perspective on a symmetric world. Heldt CL, Zhang S, Belfort G. Proteins; 2011 Jan 27; 79(1):92-8. PubMed ID: 20941707 [Abstract] [Full Text] [Related]
11. The effect of exposing a critical hydrophobic patch on amyloidogenicity and fibril structure of insulin. Li Y, Huang L, Yang X, Wang C, Sun Y, Gong H, Liu Y, Zheng L, Huang K. Biochem Biophys Res Commun; 2013 Oct 11; 440(1):56-61. PubMed ID: 24041697 [Abstract] [Full Text] [Related]
12. Template-directed self-assembly and growth of insulin amyloid fibrils. Ha C, Park CB. Biotechnol Bioeng; 2005 Jun 30; 90(7):848-55. PubMed ID: 15803463 [Abstract] [Full Text] [Related]
13. Identification of the core structure of lysozyme amyloid fibrils by proteolysis. Frare E, Mossuto MF, Polverino de Laureto P, Dumoulin M, Dobson CM, Fontana A. J Mol Biol; 2006 Aug 18; 361(3):551-61. PubMed ID: 16859705 [Abstract] [Full Text] [Related]
14. Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation. Foderà V, Cataldo S, Librizzi F, Pignataro B, Spiccia P, Leone M. J Phys Chem B; 2009 Aug 06; 113(31):10830-7. PubMed ID: 19588943 [Abstract] [Full Text] [Related]
15. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways. Griffin MD, Mok ML, Wilson LM, Pham CL, Waddington LJ, Perugini MA, Howlett GJ. J Mol Biol; 2008 Jan 04; 375(1):240-56. PubMed ID: 18005990 [Abstract] [Full Text] [Related]
16. Microfluidic self-assembly of insulin monomers into amyloid fibrils on a solid surface. Lee JS, Um E, Park JK, Park CB. Langmuir; 2008 Jul 15; 24(14):7068-71. PubMed ID: 18549255 [Abstract] [Full Text] [Related]
17. Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation. Jaikaran ET, Nilsson MR, Clark A. Biochem J; 2004 Feb 01; 377(Pt 3):709-16. PubMed ID: 14565847 [Abstract] [Full Text] [Related]
18. Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Vernaglia BA, Huang J, Clark ED. Biomacromolecules; 2004 Feb 01; 5(4):1362-70. PubMed ID: 15244452 [Abstract] [Full Text] [Related]
19. Binding mode of Thioflavin T in insulin amyloid fibrils. Groenning M, Norrman M, Flink JM, van de Weert M, Bukrinsky JT, Schluckebier G, Frokjaer S. J Struct Biol; 2007 Sep 01; 159(3):483-97. PubMed ID: 17681791 [Abstract] [Full Text] [Related]
20. Noncooperative dimethyl sulfoxide-induced dissection of insulin fibrils: toward soluble building blocks of amyloid. Loksztejn A, Dzwolak W. Biochemistry; 2009 Jun 09; 48(22):4846-51. PubMed ID: 19385641 [Abstract] [Full Text] [Related] Page: [Next] [New Search]