These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
203 related items for PubMed ID: 21918161
1. Spontaneous breathing improves shunt fraction and oxygenation in comparison with controlled ventilation at a similar amount of lung collapse. Vimlati L, Kawati R, Hedenstierna G, Larsson A, Lichtwarck-Aschoff M. Anesth Analg; 2011 Nov; 113(5):1089-95. PubMed ID: 21918161 [Abstract] [Full Text] [Related]
2. Haemodynamic stability and pulmonary shunt during spontaneous breathing and mechanical ventilation in porcine lung collapse. Vimláti L, Larsson A, Hedenstierna G, Lichtwarck-Aschoff M. Acta Anaesthesiol Scand; 2012 Jul; 56(6):748-54. PubMed ID: 22524589 [Abstract] [Full Text] [Related]
3. Pressure support ventilation and biphasic positive airway pressure improve oxygenation by redistribution of pulmonary blood flow. Carvalho AR, Spieth PM, Pelosi P, Beda A, Lopes AJ, Neykova B, Heller AR, Koch T, Gama de Abreu M. Anesth Analg; 2009 Sep; 109(3):856-65. PubMed ID: 19690258 [Abstract] [Full Text] [Related]
6. Pulmonary shunt is independent of decrease in cardiac output during unsupported spontaneous breathing in the pig. Vimlati L, Larsson A, Hedenstierna G, Lichtwarck-Aschoff M. Anesthesiology; 2013 Apr; 118(4):914-23. PubMed ID: 23334665 [Abstract] [Full Text] [Related]
7. Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Nam AJ, Brower RG, Fessler HE, Simon BA. Am J Respir Crit Care Med; 2000 Jun; 161(6):1797-804. PubMed ID: 10852747 [Abstract] [Full Text] [Related]
8. Effects of ultraprotective ventilation, extracorporeal carbon dioxide removal, and spontaneous breathing on lung morphofunction and inflammation in experimental severe acute respiratory distress syndrome. Güldner A, Kiss T, Bluth T, Uhlig C, Braune A, Carvalho N, Quast T, Rentzsch I, Huhle R, Spieth P, Richter T, Saddy F, Rocco PR, Kasper M, Koch T, Pelosi P, de Abreu MG. Anesthesiology; 2015 Mar; 122(3):631-46. PubMed ID: 25371037 [Abstract] [Full Text] [Related]
10. Chest wall disruption with and without acute lung injury: effects of continuous positive airway pressure therapy on ventilation and perfusion relationships. Schweiger JW, Downs JB, Smith RA. Crit Care Med; 2003 Sep; 31(9):2364-70. PubMed ID: 14501968 [Abstract] [Full Text] [Related]
11. Combining "open-lung" ventilation and arteriovenous extracorporeal lung assist: influence of different tidal volumes on gas exchange in experimental lung failure. Muellenbach RM, Kredel M, Kuestermann J, Klingelhoefer M, Schuster F, Wunder C, Kranke P, Roewer N, Brederlau J. Med Sci Monit; 2009 Aug; 15(8):BR213-20. PubMed ID: 19644409 [Abstract] [Full Text] [Related]
13. Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Mutch WA, Harms S, Ruth Graham M, Kowalski SE, Girling LG, Lefevre GR. Am J Respir Crit Care Med; 2000 Jul; 162(1):319-23. PubMed ID: 10903261 [Abstract] [Full Text] [Related]
14. Respiratory function during anesthesia: effects on gas exchange. Hedenstierna G, Rothen HU. Compr Physiol; 2012 Jan; 2(1):69-96. PubMed ID: 23728971 [Abstract] [Full Text] [Related]
15. [Cardiopulmonary effects of CPPV (continuous positive pressure ventilation) and IRV (inverse ratio ventilation) in experimental myocardial ischemia]. Hachenberg T, Meyer J, Sielenkämper A, Kraft W, Vogt B, Breithardt G, Lawin P. Anaesthesist; 1993 Apr; 42(4):210-20. PubMed ID: 8488992 [Abstract] [Full Text] [Related]
16. Respiratory compliance but not gas exchange correlates with changes in lung aeration after a recruitment maneuver: an experimental study in pigs with saline lavage lung injury. Henzler D, Pelosi P, Dembinski R, Ullmann A, Mahnken AH, Rossaint R, Kuhlen R. Crit Care; 2005 Oct 05; 9(5):R471-82. PubMed ID: 16277708 [Abstract] [Full Text] [Related]
17. Small-dose perfluorocarbon reduces the recruitment pressure needed to open surfactant-deficient atelectatic lungs. Houmes RJ, Lachmann RA, Haitsma JJ, Lachmann B. Acta Anaesthesiol Scand; 2006 May 05; 50(5):586-92. PubMed ID: 16643229 [Abstract] [Full Text] [Related]
18. Positive end-expiratory pressure-induced functional recruitment in patients with acute respiratory distress syndrome. Di Marco F, Devaquet J, Lyazidi A, Galia F, da Costa NP, Fumagalli R, Brochard L. Crit Care Med; 2010 Jan 05; 38(1):127-32. PubMed ID: 19730254 [Abstract] [Full Text] [Related]
19. [Mechanical ventilation in acute respiratory distress syndrome (ARDS): lung protecting strategies for improved alveolar recruitment]. Schultz MJ, van Zanten AR, de Smet AM, Kesecioglu J. Ned Tijdschr Geneeskd; 2003 Feb 22; 147(8):327-31. PubMed ID: 12661116 [Abstract] [Full Text] [Related]
20. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Reinius H, Jonsson L, Gustafsson S, Sundbom M, Duvernoy O, Pelosi P, Hedenstierna G, Fredén F. Anesthesiology; 2009 Nov 22; 111(5):979-87. PubMed ID: 19809292 [Abstract] [Full Text] [Related] Page: [Next] [New Search]