These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
195 related items for PubMed ID: 21926339
1. Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia. Neo BH, Kandhi S, Wolin MS. Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2295-304. PubMed ID: 21926339 [Abstract] [Full Text] [Related]
2. Roles for soluble guanylate cyclase and a thiol oxidation-elicited subunit dimerization of protein kinase G in pulmonary artery relaxation to hydrogen peroxide. Neo BH, Kandhi S, Wolin MS. Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1235-41. PubMed ID: 20709865 [Abstract] [Full Text] [Related]
3. Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α. Neo BH, Patel D, Kandhi S, Wolin MS. Am J Physiol Heart Circ Physiol; 2013 Aug 01; 305(3):H330-43. PubMed ID: 23709600 [Abstract] [Full Text] [Related]
4. Dehydroepiandrosterone promotes pulmonary artery relaxation by NADPH oxidation-elicited subunit dimerization of protein kinase G 1α. Patel D, Kandhi S, Kelly M, Neo BH, Wolin MS. Am J Physiol Lung Cell Mol Physiol; 2014 Feb 15; 306(4):L383-91. PubMed ID: 24375799 [Abstract] [Full Text] [Related]
5. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide. Zheng X, Ying L, Liu J, Dou D, He Q, Leung SW, Man RY, Vanhoutte PM, Gao Y. Cardiovasc Res; 2011 Jun 01; 90(3):565-72. PubMed ID: 21248051 [Abstract] [Full Text] [Related]
6. Exposure of mice to chronic hypoxia attenuates pulmonary arterial contractile responses to acute hypoxia by increases in extracellular hydrogen peroxide. Patel D, Alhawaj R, Wolin MS. Am J Physiol Regul Integr Comp Physiol; 2014 Aug 15; 307(4):R426-33. PubMed ID: 24920729 [Abstract] [Full Text] [Related]
7. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation. Holt AW, Martin DN, Shaver PR, Adderley SP, Stone JD, Joshi CN, Francisco JT, Lust RM, Weidner DA, Shewchuk BM, Tulis DA. Cell Signal; 2016 Sep 15; 28(9):1364-1379. PubMed ID: 27302407 [Abstract] [Full Text] [Related]
8. Protein kinase G phosphorylates soluble guanylyl cyclase on serine 64 and inhibits its activity. Zhou Z, Sayed N, Pyriochou A, Roussos C, Fulton D, Beuve A, Papapetropoulos A. Arterioscler Thromb Vasc Biol; 2008 Oct 15; 28(10):1803-10. PubMed ID: 18635821 [Abstract] [Full Text] [Related]
9. Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide. Ye L, Liu J, Liu H, Ying L, Dou D, Chen Z, Xu X, Raj JU, Gao Y. Pflugers Arch; 2013 Feb 15; 465(2):333-41. PubMed ID: 23143201 [Abstract] [Full Text] [Related]
10. Redox regulation of guanylate cyclase and protein kinase G in vascular responses to hypoxia. Neo BH, Kandhi S, Ahmad M, Wolin MS. Respir Physiol Neurobiol; 2010 Dec 31; 174(3):259-64. PubMed ID: 20831906 [Abstract] [Full Text] [Related]
11. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91(phox) to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, Buharalioglu CK, Sahan-Firat S, Cuez T, Schunck WH, Manthati VL, Falck JR, Malik KU. Nitric Oxide; 2013 Sep 01; 33():18-41. PubMed ID: 23684565 [Abstract] [Full Text] [Related]
12. Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation. Mingone CJ, Gupte SA, Chow JL, Ahmad M, Abraham NG, Wolin MS. Am J Physiol Lung Cell Mol Physiol; 2006 Sep 01; 291(3):L337-44. PubMed ID: 16899710 [Abstract] [Full Text] [Related]
13. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Chen Z, Zhang X, Ying L, Dou D, Li Y, Bai Y, Liu J, Liu L, Feng H, Yu X, Leung SW, Vanhoutte PM, Gao Y. Am J Physiol Heart Circ Physiol; 2014 Aug 01; 307(3):H328-36. PubMed ID: 24906916 [Abstract] [Full Text] [Related]
14. The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization. Yao Q, Huang Y, Liu AD, Zhu M, Liu J, Yan H, Zhang Q, Geng B, Gao Y, Du S, Huang P, Tang C, Du J, Jin H. Am J Physiol Regul Integr Comp Physiol; 2016 Jun 01; 310(11):R1073-80. PubMed ID: 27009048 [Abstract] [Full Text] [Related]
15. Differential relaxing responses to particulate or soluble guanylyl cyclase activation on endothelial cells: a mechanism dependent on PKG-I alpha activation by NO/cGMP. Rivero-Vilches FJ, de Frutos S, Saura M, Rodriguez-Puyol D, Rodriguez-Puyol M. Am J Physiol Cell Physiol; 2003 Oct 01; 285(4):C891-8. PubMed ID: 12814915 [Abstract] [Full Text] [Related]
16. Thiol oxidation inhibits nitric oxide-mediated pulmonary artery relaxation and guanylate cyclase stimulation. Mingone CJ, Gupte SA, Ali N, Oeckler RA, Wolin MS. Am J Physiol Lung Cell Mol Physiol; 2006 Mar 01; 290(3):L549-57. PubMed ID: 16272175 [Abstract] [Full Text] [Related]
17. Potential role of mitochondrial superoxide decreasing ferrochelatase and heme in coronary artery soluble guanylate cyclase depletion by angiotensin II. Patel D, Alhawaj R, Kelly MR, Accarino JJ, Lakhkar A, Gupte SA, Sun D, Wolin MS. Am J Physiol Heart Circ Physiol; 2016 Jun 01; 310(11):H1439-47. PubMed ID: 27037373 [Abstract] [Full Text] [Related]
18. Preservation of nitric oxide-induced relaxation of porcine coronary artery: roles of the dimers of soluble guanylyl cyclase, phosphodiesterase type 5, and cGMP-dependent protein kinase. Liu J, Chen Z, Ye L, Liu H, Dou D, Liu L, Yu X, Gao Y. Pflugers Arch; 2014 Oct 01; 466(10):1999-2008. PubMed ID: 24413911 [Abstract] [Full Text] [Related]
19. NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO. Gupte SA, Rupawalla T, Phillibert D, Wolin MS. Am J Physiol; 1999 Dec 01; 277(6):L1124-32. PubMed ID: 10600882 [Abstract] [Full Text] [Related]
20. Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide- and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes. Sporbert A, Mertsch K, Smolenski A, Haseloff RF, Schönfelder G, Paul M, Ruth P, Walter U, Blasig IE. Brain Res Mol Brain Res; 1999 Apr 20; 67(2):258-66. PubMed ID: 10216224 [Abstract] [Full Text] [Related] Page: [Next] [New Search]