These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1185 related items for PubMed ID: 21937670

  • 1. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.
    Wertin TM, McGuire MA, Teskey RO.
    Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670
    [Abstract] [Full Text] [Related]

  • 2. Urban environment of New York City promotes growth in northern red oak seedlings.
    Searle SY, Turnbull MH, Boelman NT, Schuster WS, Yakir D, Griffin KL.
    Tree Physiol; 2012 Apr; 32(4):389-400. PubMed ID: 22491523
    [Abstract] [Full Text] [Related]

  • 3. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.
    Bauweraerts I, Wertin TM, Ameye M, McGuire MA, Teskey RO, Steppe K.
    Glob Chang Biol; 2013 Feb; 19(2):517-28. PubMed ID: 23504789
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature.
    Zhao H, Li Y, Zhang X, Korpelainen H, Li C.
    Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961
    [Abstract] [Full Text] [Related]

  • 6. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings.
    Pumpanen J, Heinonsalo J, Rasilo T, Villemot J, Ilvesniemi H.
    Tree Physiol; 2012 Jun; 32(6):724-36. PubMed ID: 22345325
    [Abstract] [Full Text] [Related]

  • 7. Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings.
    Ambebe TF, Dang QL, Li J.
    Tree Physiol; 2010 Feb; 30(2):234-43. PubMed ID: 20007132
    [Abstract] [Full Text] [Related]

  • 8. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change.
    Peltier DM, Ibáñez I.
    Tree Physiol; 2015 Jan; 35(1):71-85. PubMed ID: 25576758
    [Abstract] [Full Text] [Related]

  • 9. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.].
    Way DA, Sage RF.
    Plant Cell Environ; 2008 Sep; 31(9):1250-62. PubMed ID: 18532986
    [Abstract] [Full Text] [Related]

  • 10. A comparative study of physiological and morphological seedling traits associated with shade tolerance in introduced red oak (Quercus rubra) and native hardwood tree species in southwestern Germany.
    Kuehne C, Nosko P, Horwath T, Bauhus J.
    Tree Physiol; 2014 Feb; 34(2):184-93. PubMed ID: 24531297
    [Abstract] [Full Text] [Related]

  • 11. Effects of predicted future and current atmospheric temperature and [CO2] and high and low soil moisture on gas exchange and growth of Pinus taeda seedlings at cool and warm sites in the species range.
    Wertin TM, McGuire MA, Teskey RO.
    Tree Physiol; 2012 Jul; 32(7):847-58. PubMed ID: 22696270
    [Abstract] [Full Text] [Related]

  • 12. Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere.
    Domínguez MT, Marañón T, Murillo JM, Redondo-Gómez S.
    Chemosphere; 2011 May; 83(8):1166-74. PubMed ID: 21281955
    [Abstract] [Full Text] [Related]

  • 13. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber).
    Vaz M, Pereira JS, Gazarini LC, David TS, David JS, Rodrigues A, Maroco J, Chaves MM.
    Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151
    [Abstract] [Full Text] [Related]

  • 14. Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple.
    Paquette A, Fontaine B, Berninger F, Dubois K, Lechowicz MJ, Messier C, Posada JM, Valladares F, Brisson J.
    Tree Physiol; 2012 Nov; 32(11):1339-47. PubMed ID: 23076822
    [Abstract] [Full Text] [Related]

  • 15. Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature.
    Ghannoum O, Phillips NG, Sears MA, Logan BA, Lewis JD, Conroy JP, Tissue DT.
    Plant Cell Environ; 2010 Oct; 33(10):1671-81. PubMed ID: 20492554
    [Abstract] [Full Text] [Related]

  • 16. Localized stem chilling alters carbon processes in the adjacent stem and in source leaves.
    De Schepper V, Vanhaecke L, Steppe K.
    Tree Physiol; 2011 Nov; 31(11):1194-203. PubMed ID: 22001166
    [Abstract] [Full Text] [Related]

  • 17. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.
    Ambebe TF, Dang QL.
    Tree Physiol; 2009 Nov; 29(11):1341-8. PubMed ID: 19797245
    [Abstract] [Full Text] [Related]

  • 18. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M, Niinemets U, Cescatti A.
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [Abstract] [Full Text] [Related]

  • 19. Photosynthetic downregulation in leaves of the Japanese white birch grown under elevated CO(2) concentration does not change their temperature-dependent susceptibility to photoinhibition.
    Komatsu M, Tobita H, Watanabe M, Yazaki K, Koike T, Kitao M.
    Physiol Plant; 2013 Feb; 147(2):159-68. PubMed ID: 22607385
    [Abstract] [Full Text] [Related]

  • 20. Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above- and belowground nitrogen sources.
    Eller AS, McGuire KL, Sparks JP.
    Tree Physiol; 2011 Apr; 31(4):391-401. PubMed ID: 21470979
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 60.