These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
362 related items for PubMed ID: 21942510
1. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. Heinemann S, Heinemann C, Jäger M, Neunzehn J, Wiesmann HP, Hanke T. ACS Appl Mater Interfaces; 2011 Nov; 3(11):4323-31. PubMed ID: 21942510 [Abstract] [Full Text] [Related]
2. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B, Wan YZ, Tang TT, Gao C, Dai KR. Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148 [Abstract] [Full Text] [Related]
3. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralized collagen. Bernhardt A, Lode A, Mietrach C, Hempel U, Hanke T, Gelinsky M. J Biomed Mater Res A; 2009 Sep 01; 90(3):852-62. PubMed ID: 18615470 [Abstract] [Full Text] [Related]
4. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Zhou C, Ye X, Fan Y, Ma L, Tan Y, Qing F, Zhang X. Biofabrication; 2014 Sep 01; 6(3):035013. PubMed ID: 24873777 [Abstract] [Full Text] [Related]
5. A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells. Nair MB, Bernhardt A, Lode A, Heinemann C, Thieme S, Hanke T, Varma H, Gelinsky M, John A. J Biomed Mater Res A; 2009 Aug 01; 90(2):533-42. PubMed ID: 18563821 [Abstract] [Full Text] [Related]
6. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV, Thomas V, Xu Y, Bellis S, Nyairo E, Dean D. Macromol Biosci; 2010 Apr 08; 10(4):433-44. PubMed ID: 20112236 [Abstract] [Full Text] [Related]
7. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL. Biomaterials; 2006 Dec 08; 27(36):6123-37. PubMed ID: 16945410 [Abstract] [Full Text] [Related]
8. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, Gomes ME, Mano JF, Ohgushi H, Reis RL. J Biomed Mater Res A; 2009 Oct 08; 91(1):175-86. PubMed ID: 18780358 [Abstract] [Full Text] [Related]
9. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. Lode A, Bernhardt A, Gelinsky M. J Tissue Eng Regen Med; 2008 Oct 08; 2(7):400-7. PubMed ID: 18756590 [Abstract] [Full Text] [Related]
10. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C, Ciapetti G, Leonardi E, Baldini N, Bretcanu O, Verné E, Baino F. J Biomater Appl; 2011 Nov 08; 26(4):465-89. PubMed ID: 20566654 [Abstract] [Full Text] [Related]
11. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells. Heinemann C, Heinemann S, Lode A, Bernhardt A, Worch H, Hanke T. Biomacromolecules; 2009 May 11; 10(5):1305-10. PubMed ID: 19344120 [Abstract] [Full Text] [Related]
12. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure. Bernhardt A, Despang F, Lode A, Demmler A, Hanke T, Gelinsky M. J Tissue Eng Regen Med; 2009 Jan 11; 3(1):54-62. PubMed ID: 19012272 [Abstract] [Full Text] [Related]
13. Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO(2) foaming. Salerno A, Zeppetelli S, Di Maio E, Iannace S, Netti PA. Macromol Rapid Commun; 2011 Aug 03; 32(15):1150-6. PubMed ID: 21648005 [Abstract] [Full Text] [Related]
14. Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering. Patel M, Patel KJ, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP. J Biomed Mater Res A; 2010 Aug 03; 94(2):408-18. PubMed ID: 20186741 [Abstract] [Full Text] [Related]
15. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Poursamar SA, Azami M, Mozafari M. Colloids Surf B Biointerfaces; 2011 Jun 01; 84(2):310-6. PubMed ID: 21310596 [Abstract] [Full Text] [Related]
16. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I. Acta Biomater; 2011 Feb 01; 7(2):809-20. PubMed ID: 20849985 [Abstract] [Full Text] [Related]
17. In vitro studies and preliminary in vivo evaluation of silicified concentrated collagen hydrogels. Desimone MF, Hélary C, Quignard S, Rietveld IB, Bataille I, Copello GJ, Mosser G, Giraud-Guille MM, Livage J, Meddahi-Pellé A, Coradin T. ACS Appl Mater Interfaces; 2011 Oct 01; 3(10):3831-8. PubMed ID: 21910471 [Abstract] [Full Text] [Related]
18. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T, Yang X, Qi X, Jiang C. J Transl Med; 2015 May 08; 13():152. PubMed ID: 25952675 [Abstract] [Full Text] [Related]