These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
323 related items for PubMed ID: 21947182
21. Cost-effectiveness and budget impact of the microprocessor-controlled knee C-Leg in transfemoral amputees with and without diabetes mellitus. Kuhlmann A, Krüger H, Seidinger S, Hahn A. Eur J Health Econ; 2020 Apr; 21(3):437-449. PubMed ID: 31897813 [Abstract] [Full Text] [Related]
22. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Kaufman KR, Levine JA, Brey RH, McCrady SK, Padgett DJ, Joyner MJ. Arch Phys Med Rehabil; 2008 Jul; 89(7):1380-5. PubMed ID: 18586142 [Abstract] [Full Text] [Related]
23. Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation? Aldridge Whitehead JM, Wolf EJ, Scoville CR, Wilken JM. Clin Orthop Relat Res; 2014 Oct; 472(10):3093-101. PubMed ID: 24515402 [Abstract] [Full Text] [Related]
24. Design, Analysis, and Development of Low-Cost State-of-the-Art Magnetorheological-Based Microprocessor Prosthetic Knee. Qadir MU, Haq IU, Khan MA, Shah K, Chouikhi H, Ismail MA. Sensors (Basel); 2024 Jan 01; 24(1):. PubMed ID: 38203117 [Abstract] [Full Text] [Related]
25. [The influence of the C-leg knee-shin system from the Otto Bock Company in the care of above-knee amputees. A clinical-biomechanical study to define indications]. Wetz HH, Hafkemeyer U, Drerup B. Orthopade; 2005 Apr 01; 34(4):298, 300-314, 316-9. PubMed ID: 15812621 [Abstract] [Full Text] [Related]
26. Mobility function of a prosthetic knee joint with an automatic stance phase lock. Andrysek J, Klejman S, Torres-Moreno R, Heim W, Steinnagel B, Glasford S. Prosthet Orthot Int; 2011 Jun 01; 35(2):163-70. PubMed ID: 21697198 [Abstract] [Full Text] [Related]
27. Comparison of nonmicroprocessor knee mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. Kahle JT, Highsmith MJ, Hubbard SL. J Rehabil Res Dev; 2008 Jun 01; 45(1):1-14. PubMed ID: 18566922 [Abstract] [Full Text] [Related]
28. Does having a computerized prosthetic knee influence cognitive performance during amputee walking? Williams RM, Turner AP, Orendurff M, Segal AD, Klute GK, Pecoraro J, Czerniecki J. Arch Phys Med Rehabil; 2006 Jul 01; 87(7):989-94. PubMed ID: 16813788 [Abstract] [Full Text] [Related]
29. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Abdulhasan ZM, Scally AJ, Buckley JG. Clin Biomech (Bristol); 2018 Aug 01; 57():35-41. PubMed ID: 29908391 [Abstract] [Full Text] [Related]
30. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation. Okita Y, Yamasaki N, Nakamura T, Mita T, Kubo T, Mitsumoto A, Akune T. Prosthet Orthot Int; 2019 Feb 01; 43(1):55-61. PubMed ID: 30051754 [Abstract] [Full Text] [Related]
31. Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Bellmann M, Schmalz T, Ludwigs E, Blumentritt S. Biomed Tech (Berl); 2012 Dec 01; 57(6):435-44. PubMed ID: 23241569 [Abstract] [Full Text] [Related]
32. Subject-specific responses to an adaptive ankle prosthesis during incline walking. Lamers EP, Eveld ME, Zelik KE. J Biomech; 2019 Oct 11; 95():109273. PubMed ID: 31431348 [Abstract] [Full Text] [Related]
33. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task. Ernst M, Altenburg B, Bellmann M, Schmalz T. J Neuroeng Rehabil; 2017 Nov 16; 14(1):117. PubMed ID: 29145876 [Abstract] [Full Text] [Related]
34. Comparative biomechanical evaluation of two technologically different microprocessor-controlled prosthetic knee joints in safety-relevant daily-life situations. Bellmann M, Köhler TM, Schmalz T. Biomed Tech (Berl); 2019 Aug 27; 64(4):407-420. PubMed ID: 30540556 [Abstract] [Full Text] [Related]
35. Impacts of Microprocessor-Controlled Versus Non-microprocessor-Controlled Prosthetic Knee Joints Among Transfemoral Amputees on Functional Outcomes: A Comparative Study. Alzeer AM, Bhaskar Raj N, Shahine EM, Nadiah WA. Cureus; 2022 Apr 27; 14(4):e24331. PubMed ID: 35607529 [Abstract] [Full Text] [Related]
36. The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis. Hahn A, Bueschges S, Prager M, Kannenberg A. Disabil Rehabil; 2022 Dec 27; 44(24):7349-7367. PubMed ID: 34694952 [Abstract] [Full Text] [Related]
37. Mobility analysis of amputees (MAAT 3): Matching individuals based on comorbid health reveals improved function for above-knee prosthesis users with microprocessor knee technology. Wurdeman SR, Stevens PM, Campbell JH. Assist Technol; 2020 Sep 02; 32(5):236-242. PubMed ID: 30592436 [Abstract] [Full Text] [Related]
38. Influence of a user-adaptive prosthetic knee on quality of life, balance confidence, and measures of mobility: a randomised cross-over trial. Prinsen EC, Nederhand MJ, Olsman J, Rietman JS. Clin Rehabil; 2015 Jun 02; 29(6):581-91. PubMed ID: 25288047 [Abstract] [Full Text] [Related]
39. Rehabilitation evaluation of the newly developed polymeric based passive polycentric knee joint. Arun S, Marbaniang B, Borgohain B, Kanagaraj S. Disabil Rehabil Assist Technol; 2020 Nov 02; 15(8):871-877. PubMed ID: 31172818 [Abstract] [Full Text] [Related]
40. Transitioning to a microprocessor-controlled prosthetic knee: Executive functioning during single and dual-task gait. Ramstrand N, Rusaw DF, Möller SF. Prosthet Orthot Int; 2020 Feb 02; 44(1):27-35. PubMed ID: 31826702 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]