These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium. Uma B, Eckmann DM, Ayyaswamy PS, Radhakrishnan R. Mol Phys; 2012; 110(11-12):1057-1067. PubMed ID: 22865935 [Abstract] [Full Text] [Related]
4. MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES. Uma B, Ayyaswamy PS, Radhakrishnan R, Eckmann DM. Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012); 2012 Mar; 2012():735-743. PubMed ID: 25621317 [Abstract] [Full Text] [Related]
14. Effect of Memory and Active Forces on Transition Path Time Distributions. Carlon E, Orland H, Sakaue T, Vanderzande C. J Phys Chem B; 2018 Dec 13; 122(49):11186-11194. PubMed ID: 30102039 [Abstract] [Full Text] [Related]
17. Memory Corrections to Markovian Langevin Dynamics. Wiśniewski M, Łuczka J, Spiechowicz J. Entropy (Basel); 2024 May 16; 26(5):. PubMed ID: 38785674 [Abstract] [Full Text] [Related]
18. Analytical solution of the generalized Langevin equation with hydrodynamic interactions: subdiffusion of heavy tracers. Grebenkov DS, Vahabi M. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan 16; 89(1):012130. PubMed ID: 24580195 [Abstract] [Full Text] [Related]
19. Ornstein-Uhlenbeck process and generalizations: Particle dynamics under comb constraints and stochastic resetting. Trajanovski P, Jolakoski P, Zelenkovski K, Iomin A, Kocarev L, Sandev T. Phys Rev E; 2023 May 16; 107(5-1):054129. PubMed ID: 37328979 [Abstract] [Full Text] [Related]