These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
124 related items for PubMed ID: 21952200
1. Beta-arrestin2 as a competitor for GRK2 interaction with the GLP-1 receptor upon receptor activation. Jorgensen R, Norklit Roed S, Heding A, Elling CE. Pharmacology; 2011; 88(3-4):174-81. PubMed ID: 21952200 [Abstract] [Full Text] [Related]
2. Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Zheng H, Worrall C, Shen H, Issad T, Seregard S, Girnita A, Girnita L. Proc Natl Acad Sci U S A; 2012 May 01; 109(18):7055-60. PubMed ID: 22509025 [Abstract] [Full Text] [Related]
3. The role of G protein-coupled receptor kinases in GLP-1R β-arrestin recruitment and internalisation. McNeill SM, Lu J, Marion C Carino C, Inoue A, Zhao P, Sexton PM, Wootten D. Biochem Pharmacol; 2024 Apr 01; 222():116119. PubMed ID: 38461904 [Abstract] [Full Text] [Related]
5. Post-endocytic fates of delta-opioid receptor are regulated by GRK2-mediated receptor phosphorylation and distinct beta-arrestin isoforms. Zhang X, Wang F, Chen X, Chen Y, Ma L. J Neurochem; 2008 Jul 01; 106(2):781-92. PubMed ID: 18419762 [Abstract] [Full Text] [Related]
6. The GIP receptor displays higher basal activity than the GLP-1 receptor but does not recruit GRK2 or arrestin3 effectively. Al-Sabah S, Al-Fulaij M, Shaaban G, Ahmed HA, Mann RJ, Donnelly D, Bünemann M, Krasel C. PLoS One; 2014 Jul 01; 9(9):e106890. PubMed ID: 25191754 [Abstract] [Full Text] [Related]
7. Multiple scaffolding functions of {beta}-arrestins in the degradation of G protein-coupled receptor kinase 2. Nogués L, Salcedo A, Mayor F, Penela P. J Biol Chem; 2011 Jan 14; 286(2):1165-73. PubMed ID: 21081496 [Abstract] [Full Text] [Related]
8. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation. Pack TF, Orlen MI, Ray C, Peterson SM, Caron MG. J Biol Chem; 2018 Apr 20; 293(16):6161-6171. PubMed ID: 29487132 [Abstract] [Full Text] [Related]
9. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M. J Biomol Screen; 2005 Aug 20; 10(5):463-75. PubMed ID: 16093556 [Abstract] [Full Text] [Related]
10. GRK Inhibition Potentiates Glucagon-Like Peptide-1 Action. Lee SP, Qi J, Xu G, Rankin MM, Littrell J, Xu JZ, Bakaj I, Pocai A. Front Endocrinol (Lausanne); 2021 Aug 20; 12():652628. PubMed ID: 34054727 [Abstract] [Full Text] [Related]
11. GRK2-mediated receptor phosphorylation and Mdm2-mediated β-arrestin2 ubiquitination drive clathrin-mediated endocytosis of G protein-coupled receptors. Zhang X, Zheng M, Kim KM. Biochem Biophys Res Commun; 2020 Dec 10; 533(3):383-390. PubMed ID: 32962859 [Abstract] [Full Text] [Related]
12. The short third intracellular loop and cytoplasmic tail of bitter taste receptors provide functionally relevant GRK phosphorylation sites in TAS2R14. Kim D, Castaño M, Lujan LK, Woo JA, Liggett SB. J Biol Chem; 2021 Dec 10; 296():100216. PubMed ID: 33465377 [Abstract] [Full Text] [Related]
13. Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype. Jorgensen R, Martini L, Schwartz TW, Elling CE. Mol Endocrinol; 2005 Mar 10; 19(3):812-23. PubMed ID: 15528268 [Abstract] [Full Text] [Related]
14. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. Scott MG, Le Rouzic E, Périanin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A. J Biol Chem; 2002 Oct 04; 277(40):37693-701. PubMed ID: 12167659 [Abstract] [Full Text] [Related]
15. The putative signal peptide of glucagon-like peptide-1 receptor is not required for receptor synthesis but promotes receptor expression. Ge Y, Yang D, Dai A, Zhou C, Zhu Y, Wang MW. Biosci Rep; 2014 Nov 21; 34(6):e00152. PubMed ID: 25330813 [Abstract] [Full Text] [Related]
16. Tonic inhibition by G protein-coupled receptor kinase 2 of Akt/endothelial nitric-oxide synthase signaling in human vascular endothelial cells under conditions of hyperglycemia with high insulin levels. Taguchi K, Sakata K, Ohashi W, Imaizumi T, Imura J, Hattori Y. J Pharmacol Exp Ther; 2014 May 21; 349(2):199-208. PubMed ID: 24570070 [Abstract] [Full Text] [Related]
18. Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. Beautrait A, Michalski KR, Lopez TS, Mannix KM, McDonald DJ, Cutter AR, Medina CB, Hebert AM, Francis CJ, Bouvier M, Tesmer JJ, Sterne-Marr R. J Biol Chem; 2014 Sep 05; 289(36):25262-75. PubMed ID: 25049229 [Abstract] [Full Text] [Related]
19. Dual mode of glucagon receptor internalization: role of PKCα, GRKs and β-arrestins. Krilov L, Nguyen A, Miyazaki T, Unson CG, Williams R, Lee NH, Ceryak S, Bouscarel B. Exp Cell Res; 2011 Dec 10; 317(20):2981-94. PubMed ID: 22001118 [Abstract] [Full Text] [Related]
20. GRK2 regulates GLP-1R-mediated early phase insulin secretion in vivo. Arcones AC, Vila-Bedmar R, Mirasierra M, Cruces-Sande M, Vallejo M, Jones B, Tomas A, Mayor F, Murga C. BMC Biol; 2021 Mar 03; 19(1):40. PubMed ID: 33658023 [Abstract] [Full Text] [Related] Page: [Next] [New Search]