These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


244 related items for PubMed ID: 21952954

  • 1. Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances.
    Fischer J, Vogel N, Mohammadi R, Butt HJ, Landfester K, Weiss CK, Kreiter M.
    Nanoscale; 2011 Nov; 3(11):4788-97. PubMed ID: 21952954
    [Abstract] [Full Text] [Related]

  • 2. Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography.
    Vogel N, Fischer J, Mohammadi R, Retsch M, Butt HJ, Landfester K, Weiss CK, Kreiter M.
    Nano Lett; 2011 Feb 09; 11(2):446-54. PubMed ID: 21218827
    [Abstract] [Full Text] [Related]

  • 3. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F, Weber D, Katzmann J, Huck C, Toma A, Di Fabrizio E, Pucci A, Härtling T.
    ACS Nano; 2012 Aug 28; 6(8):7326-32. PubMed ID: 22804706
    [Abstract] [Full Text] [Related]

  • 4. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.
    Alber I, Sigle W, Müller S, Neumann R, Picht O, Rauber M, van Aken PA, Toimil-Molares ME.
    ACS Nano; 2011 Dec 27; 5(12):9845-53. PubMed ID: 22077953
    [Abstract] [Full Text] [Related]

  • 5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 27; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 6. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P.
    ACS Nano; 2008 Apr 27; 2(4):707-18. PubMed ID: 19206602
    [Abstract] [Full Text] [Related]

  • 7. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L, Woo KC, Chen H, Jin Z, Wang J, Lin HQ.
    ACS Nano; 2010 Jun 22; 4(6):3053-62. PubMed ID: 20565141
    [Abstract] [Full Text] [Related]

  • 8. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing.
    Aćimović SS, Kreuzer MP, González MU, Quidant R.
    ACS Nano; 2009 May 26; 3(5):1231-7. PubMed ID: 19385661
    [Abstract] [Full Text] [Related]

  • 9. Controlled assembly of plasmonic colloidal nanoparticle clusters.
    Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM.
    Nanoscale; 2011 Apr 26; 3(4):1304-15. PubMed ID: 21229160
    [Abstract] [Full Text] [Related]

  • 10. Simple and versatile route to high yield face-to-face dimeric assembly of Ag nanocubes and their surface plasmonic properties.
    Uchida S, Taguchi A, Mitani M, ichimura T, Kawata S, Yamamura K, Zettsu N.
    J Nanosci Nanotechnol; 2011 Apr 26; 11(4):2890-6. PubMed ID: 21776649
    [Abstract] [Full Text] [Related]

  • 11. Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
    Leggett GJ.
    ACS Nano; 2011 Mar 22; 5(3):1575-9. PubMed ID: 21417494
    [Abstract] [Full Text] [Related]

  • 12. Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres.
    Slablab A, Le Xuan L, Zielinski M, de Wilde Y, Jacques V, Chauvat D, Roch JF.
    Opt Express; 2012 Jan 02; 20(1):220-7. PubMed ID: 22274345
    [Abstract] [Full Text] [Related]

  • 13. Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding.
    Grillet N, Manchon D, Bertorelle F, Bonnet C, Broyer M, Cottancin E, Lermé J, Hillenkamp M, Pellarin M.
    ACS Nano; 2011 Dec 27; 5(12):9450-62. PubMed ID: 22087471
    [Abstract] [Full Text] [Related]

  • 14. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.
    de Julián Fernández C, Mattei G, Paz E, Novak RL, Cavigli L, Bogani L, Palomares FJ, Mazzoldi P, Caneschi A.
    Nanotechnology; 2010 Apr 23; 21(16):165701. PubMed ID: 20348591
    [Abstract] [Full Text] [Related]

  • 15. Dipole, quadrupole and octupole plasmon resonance modes in non-concentric nanocrescent/nanodisk structure: local field enhancement in the visible and near infrared regions.
    Zhang Y, Jia TQ, Zhang SA, Feng DH, Xu ZZ.
    Opt Express; 2012 Jan 30; 20(3):2924-31. PubMed ID: 22330530
    [Abstract] [Full Text] [Related]

  • 16. A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures.
    Ma WY, Yang H, Hilton JP, Lin Q, Liu JY, Huang LX, Yao J.
    Opt Express; 2010 Jan 18; 18(2):843-53. PubMed ID: 20173906
    [Abstract] [Full Text] [Related]

  • 17. Plasmon resonance changes of gold nanoparticle arrays upon modification.
    Ha DH, Kim S, Yun YJ, Park HJ, Yun WS, Song JH.
    Nanotechnology; 2009 Feb 25; 20(8):085204. PubMed ID: 19417444
    [Abstract] [Full Text] [Related]

  • 18. Shape-dependent plasmon-resonant gold nanoparticles.
    Orendorff CJ, Sau TK, Murphy CJ.
    Small; 2006 May 25; 2(5):636-9. PubMed ID: 17193100
    [No Abstract] [Full Text] [Related]

  • 19. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging.
    Dhawan A, Duval A, Nakkach M, Barbillon G, Moreau J, Canva M, Vo-Dinh T.
    Nanotechnology; 2011 Apr 22; 22(16):165301. PubMed ID: 21393822
    [Abstract] [Full Text] [Related]

  • 20. Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering.
    Chen T, Du C, Tan LH, Shen Z, Chen H.
    Nanoscale; 2011 Apr 22; 3(4):1575-81. PubMed ID: 21286607
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.