These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


187 related items for PubMed ID: 21958132

  • 21. Mechanistic and Evolutionary Insights from the Reciprocal Promiscuity of Two Pyridoxal Phosphate-dependent Enzymes.
    Soo VW, Yosaatmadja Y, Squire CJ, Patrick WM.
    J Biol Chem; 2016 Sep 16; 291(38):19873-87. PubMed ID: 27474741
    [Abstract] [Full Text] [Related]

  • 22. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli.
    Martí-Arbona R, Fresquet V, Thoden JB, Davis ML, Holden HM, Raushel FM.
    Biochemistry; 2005 May 17; 44(19):7115-24. PubMed ID: 15882050
    [Abstract] [Full Text] [Related]

  • 23. Mechanistic studies on N-acetylmuramic acid 6-phosphate hydrolase (MurQ): an etherase involved in peptidoglycan recycling.
    Hadi T, Dahl U, Mayer C, Tanner ME.
    Biochemistry; 2008 Nov 04; 47(44):11547-58. PubMed ID: 18837509
    [Abstract] [Full Text] [Related]

  • 24. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.
    Wahba HM, Lecoq L, Stevenson M, Mansour A, Cappadocia L, Lafrance-Vanasse J, Wilkinson KJ, Sygusch J, Wilcox DE, Omichinski JG.
    Biochemistry; 2016 Feb 23; 55(7):1070-81. PubMed ID: 26820485
    [Abstract] [Full Text] [Related]

  • 25. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli.
    Alkema WB, Prins AK, de Vries E, Janssen DB.
    Biochem J; 2002 Jul 01; 365(Pt 1):303-9. PubMed ID: 12071857
    [Abstract] [Full Text] [Related]

  • 26. Glutamate 47 in 1-aminocyclopropane-1-carboxylate synthase is a major specificity determinant.
    McCarthy DL, Capitani G, Feng L, Gruetter MG, Kirsch JF.
    Biochemistry; 2001 Oct 16; 40(41):12276-84. PubMed ID: 11591146
    [Abstract] [Full Text] [Related]

  • 27. Role of active-site residues Thr81, Ser82, Thr85, Gln157, and Tyr158 in yeast cystathionine beta-synthase catalysis and reaction specificity.
    Aitken SM, Kirsch JF.
    Biochemistry; 2004 Feb 24; 43(7):1963-71. PubMed ID: 14967036
    [Abstract] [Full Text] [Related]

  • 28. Preferential hydrolysis of aberrant intermediates by the type II thioesterase in Escherichia coli nonribosomal enterobactin synthesis: substrate specificities and mutagenic studies on the active-site residues.
    Guo ZF, Sun Y, Zheng S, Guo Z.
    Biochemistry; 2009 Mar 03; 48(8):1712-22. PubMed ID: 19193103
    [Abstract] [Full Text] [Related]

  • 29. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum.
    Marienhagen J, Sandalova T, Sahm H, Eggeling L, Schneider G.
    Acta Crystallogr D Biol Crystallogr; 2008 Jun 03; 64(Pt 6):675-85. PubMed ID: 18560156
    [Abstract] [Full Text] [Related]

  • 30. Role of a conserved active site cation-pi interaction in Escherichia coli serine hydroxymethyltransferase.
    Vivoli M, Angelucci F, Ilari A, Morea V, Angelaccio S, di Salvo ML, Contestabile R.
    Biochemistry; 2009 Dec 22; 48(50):12034-46. PubMed ID: 19883126
    [Abstract] [Full Text] [Related]

  • 31. Structure-activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis.
    Xie X, Huo W, Xia J, Xu Q, Chen N.
    Enzyme Microb Technol; 2012 Jun 10; 51(1):59-65. PubMed ID: 22579392
    [Abstract] [Full Text] [Related]

  • 32. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis.
    Sandmark J, Eliot AC, Famm K, Schneider G, Kirsch JF.
    Biochemistry; 2004 Feb 10; 43(5):1213-22. PubMed ID: 14756557
    [Abstract] [Full Text] [Related]

  • 33. L-cysteine desulfidase: an [4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of L-cysteine into pyruvate, ammonia, and sulfide.
    Tchong SI, Xu H, White RH.
    Biochemistry; 2005 Feb 08; 44(5):1659-70. PubMed ID: 15683250
    [Abstract] [Full Text] [Related]

  • 34. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK, Keeffe JR, Kast P, Mayo SL.
    Biochemistry; 2007 Jun 12; 46(23):6883-91. PubMed ID: 17506527
    [Abstract] [Full Text] [Related]

  • 35. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum reveals its substrate and reaction specificity.
    Steegborn C, Messerschmidt A, Laber B, Streber W, Huber R, Clausen T.
    J Mol Biol; 1999 Jul 30; 290(5):983-96. PubMed ID: 10438597
    [Abstract] [Full Text] [Related]

  • 36. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC, Craig SP, Eakin AE.
    Biochemistry; 1998 Mar 10; 37(10):3491-8. PubMed ID: 9521670
    [Abstract] [Full Text] [Related]

  • 37. Substitution for Asn460 cripples β-galactosidase (Escherichia coli) by increasing substrate affinity and decreasing transition state stability.
    Wheatley RW, Kappelhoff JC, Hahn JN, Dugdale ML, Dutkoski MJ, Tamman SD, Fraser ME, Huber RE.
    Arch Biochem Biophys; 2012 May 10; 521(1-2):51-61. PubMed ID: 22446164
    [Abstract] [Full Text] [Related]

  • 38. The X-ray structure of N-methyltryptophan oxidase reveals the structural determinants of substrate specificity.
    Ilari A, Bonamore A, Franceschini S, Fiorillo A, Boffi A, Colotti G.
    Proteins; 2008 Jun 10; 71(4):2065-75. PubMed ID: 18186483
    [Abstract] [Full Text] [Related]

  • 39. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV, Zakomirdina LN, Kulikova VV, Dementieva IS, Faleev NG, Ronda L, Mozzarelli A, Gollnick PD, Phillips RS.
    Biochemistry; 2003 Sep 30; 42(38):11161-9. PubMed ID: 14503866
    [Abstract] [Full Text] [Related]

  • 40. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM, McIntosh EM, Muscat GE.
    J Mol Biol; 1999 Apr 30; 288(2):275-87. PubMed ID: 10329142
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.