These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Cousins AB, Baroli I, Badger MR, Ivakov A, Lea PJ, Leegood RC, von Caemmerer S. Plant Physiol; 2007 Nov; 145(3):1006-17. PubMed ID: 17827274 [Abstract] [Full Text] [Related]
5. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Ku MS, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. Nat Biotechnol; 1999 Jan; 17(1):76-80. PubMed ID: 9920274 [Abstract] [Full Text] [Related]
6. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. O'Leary B, Park J, Plaxton WC. Biochem J; 2011 May 15; 436(1):15-34. PubMed ID: 21524275 [Abstract] [Full Text] [Related]
8. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J. J Exp Bot; 2008 May 15; 59(4):839-48. PubMed ID: 18272919 [Abstract] [Full Text] [Related]
9. Expression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes. Implications for genotypic capacity and phenotypic plasticity in the expression of crassulacean acid metabolism. Taybi T, Nimmo HG, Borland AM. Plant Physiol; 2004 May 15; 135(1):587-98. PubMed ID: 15133148 [Abstract] [Full Text] [Related]
11. In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions. Florez-Sarasa I, Flexas J, Rasmusson AG, Umbach AL, Siedow JN, Ribas-Carbo M. Plant Cell Environ; 2011 Aug 15; 34(8):1373-83. PubMed ID: 21486306 [Abstract] [Full Text] [Related]
12. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Ache P, Bauer H, Kollist H, Al-Rasheid KA, Lautner S, Hartung W, Hedrich R. Plant J; 2010 Jun 01; 62(6):1072-82. PubMed ID: 20345603 [Abstract] [Full Text] [Related]
13. Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. Shi HT, Li RJ, Cai W, Liu W, Wang CL, Lu YT. Plant Cell Physiol; 2012 Feb 01; 53(2):344-57. PubMed ID: 22186181 [Abstract] [Full Text] [Related]
15. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud JP. Plant Cell Physiol; 2010 Dec 01; 51(12):1975-87. PubMed ID: 20952421 [Abstract] [Full Text] [Related]
16. Photosynthesis in cells around veins of the C(3) plant Arabidopsis thaliana is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. Janacek SH, Trenkamp S, Palmer B, Brown NJ, Parsley K, Stanley S, Astley HM, Rolfe SA, Paul Quick W, Fernie AR, Hibberd JM. Plant J; 2009 Jul 01; 59(2):329-43. PubMed ID: 19302417 [Abstract] [Full Text] [Related]
18. Phosphoenolpyruvate Carboxylase in Arabidopsis Leaves Plays a Crucial Role in Carbon and Nitrogen Metabolism. Shi J, Yi K, Liu Y, Xie L, Zhou Z, Chen Y, Hu Z, Zheng T, Liu R, Chen Y, Chen J. Plant Physiol; 2015 Mar 01; 167(3):671-81. PubMed ID: 25588735 [Abstract] [Full Text] [Related]