These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
183 related items for PubMed ID: 21961842
1. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Im SH, Lim CS, Chang JA, Lee YH, Maiti N, Kim HJ, Nazeeruddin MK, Grätzel M, Seok SI. Nano Lett; 2011 Nov 09; 11(11):4789-93. PubMed ID: 21961842 [Abstract] [Full Text] [Related]
2. From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. Boix PP, Lee YH, Fabregat-Santiago F, Im SH, Mora-Sero I, Bisquert J, Seok SI. ACS Nano; 2012 Jan 24; 6(1):873-80. PubMed ID: 22175224 [Abstract] [Full Text] [Related]
3. Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells. Lim CS, Im SH, Chang JA, Lee YH, Kim HJ, Seok SI. Nanoscale; 2012 Jan 21; 4(2):429-32. PubMed ID: 22117234 [Abstract] [Full Text] [Related]
4. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells. Khurelbaatar Z, Hyung JH, Kim GS, Park NW, Shim KH, Lee SK. J Nanosci Nanotechnol; 2014 Jun 21; 14(6):4394-9. PubMed ID: 24738402 [Abstract] [Full Text] [Related]
5. CuSbS2 -sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution. Choi YC, Yeom EJ, Ahn TK, Seok SI. Angew Chem Int Ed Engl; 2015 Mar 23; 54(13):4005-9. PubMed ID: 25650302 [Abstract] [Full Text] [Related]
6. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. Andersen TR, Larsen-Olsen TT, Andreasen B, Böttiger AP, Carlé JE, Helgesen M, Bundgaard E, Norrman K, Andreasen JW, Jørgensen M, Krebs FC. ACS Nano; 2011 May 24; 5(5):4188-96. PubMed ID: 21513333 [Abstract] [Full Text] [Related]
7. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Yip CT, Guo M, Huang H, Zhou L, Wang Y, Huang C. Nanoscale; 2012 Jan 21; 4(2):448-50. PubMed ID: 22159643 [Abstract] [Full Text] [Related]
8. Dye-sensitized solar cells incorporating a "liquid" hole-transporting material. Snaith HJ, Zakeeruddin SM, Wang Q, Péchy P, Grätzel M. Nano Lett; 2006 Sep 21; 6(9):2000-3. PubMed ID: 16968015 [Abstract] [Full Text] [Related]
9. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers. Ghadiri E, Taghavinia N, Zakeeruddin SM, Grätzel M, Moser JE. Nano Lett; 2010 May 12; 10(5):1632-8. PubMed ID: 20423062 [Abstract] [Full Text] [Related]
10. Solid-state dye-sensitized solar cells based on ordered ZnO nanowire arrays. Desai UV, Xu C, Wu J, Gao D. Nanotechnology; 2012 May 25; 23(20):205401. PubMed ID: 22544072 [Abstract] [Full Text] [Related]
11. Sb(2)Se(3) -sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor. Choi YC, Mandal TN, Yang WS, Lee YH, Im SH, Noh JH, Seok SI. Angew Chem Int Ed Engl; 2014 Jan 27; 53(5):1329-33. PubMed ID: 24339328 [Abstract] [Full Text] [Related]
12. Wet chemical synthesis and self-assembly of SnS2 nanoparticles on TiO2 for quantum dot-sensitized solar cells. Tsukigase H, Suzuki Y, Berger MH, Sagawa T, Yoshikawa S. J Nanosci Nanotechnol; 2011 Apr 27; 11(4):3215-21. PubMed ID: 21776689 [Abstract] [Full Text] [Related]
13. Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Chang JA, Im SH, Lee YH, Kim HJ, Lim CS, Heo JH, Seok SI. Nano Lett; 2012 Apr 11; 12(4):1863-7. PubMed ID: 22401668 [Abstract] [Full Text] [Related]
14. Simple metal-free organic D-pi-A dyes with alkoxy- or fluorine substitutions: application in dye sensitized solar cells. Chandrasekharam M, Chiranjeevi B, Gupta KS, Singh SP, Islam A, Han L, Kantam ML. J Nanosci Nanotechnol; 2012 Jun 11; 12(6):4489-94. PubMed ID: 22905490 [Abstract] [Full Text] [Related]
15. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M. ACS Nano; 2010 Jun 22; 4(6):3169-74. PubMed ID: 20481512 [Abstract] [Full Text] [Related]
16. Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. Cates NC, Gysel R, Beiley Z, Miller CE, Toney MF, Heeney M, McCulloch I, McGehee MD. Nano Lett; 2009 Dec 22; 9(12):4153-7. PubMed ID: 19780570 [Abstract] [Full Text] [Related]
17. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Lee H, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK. Nano Lett; 2009 Dec 22; 9(12):4221-7. PubMed ID: 19891465 [Abstract] [Full Text] [Related]
18. Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. Yang Y, Pradel KC, Jing Q, Wu JM, Zhang F, Zhou Y, Zhang Y, Wang ZL. ACS Nano; 2012 Aug 28; 6(8):6984-9. PubMed ID: 22742540 [Abstract] [Full Text] [Related]
19. Effect of an ultrathin TiO(2) layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Park K, Zhang Q, Garcia BB, Zhou X, Jeong YH, Cao G. Adv Mater; 2010 Jun 04; 22(21):2329-32. PubMed ID: 20376847 [No Abstract] [Full Text] [Related]
20. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. He Z, Guai G, Liu J, Guo C, Loo JS, Li CM, Tan TT. Nanoscale; 2011 Nov 04; 3(11):4613-6. PubMed ID: 22006266 [Abstract] [Full Text] [Related] Page: [Next] [New Search]