These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
91 related items for PubMed ID: 21966918
1. Expression-based identification of genetic determinants of the bacterial symbiosis 'Chlorochromatium aggregatum'. Wenter R, Hütz K, Dibbern D, Li T, Reisinger V, Plöscher M, Eichacker L, Eddie B, Hanson T, Bryant DA, Overmann J. Environ Microbiol; 2010 Aug; 12(8):2259-76. PubMed ID: 21966918 [Abstract] [Full Text] [Related]
2. Identification and analysis of four candidate symbiosis genes from 'Chlorochromatium aggregatum', a highly developed bacterial symbiosis. Vogl K, Wenter R, Dressen M, Schlickenrieder M, Plöscher M, Eichacker L, Overmann J. Environ Microbiol; 2008 Oct; 10(10):2842-56. PubMed ID: 18707609 [Abstract] [Full Text] [Related]
3. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum". Liu Z, Müller J, Li T, Alvey RM, Vogl K, Frigaard NU, Rockwell NC, Boyd ES, Tomsho LP, Schuster SC, Henke P, Rohde M, Overmann J, Bryant DA. Genome Biol; 2013 Nov 22; 14(11):R127. PubMed ID: 24267588 [Abstract] [Full Text] [Related]
4. The phototrophic consortium "Chlorochromatium aggregatum" - a model for bacterial heterologous multicellularity. Overmann J. Adv Exp Med Biol; 2010 Nov 22; 675():15-29. PubMed ID: 20532733 [Abstract] [Full Text] [Related]
5. Ultrastructural characterization of the prokaryotic symbiosis in "Chlorochromatium aggregatum". Wanner G, Vogl K, Overmann J. J Bacteriol; 2008 May 22; 190(10):3721-30. PubMed ID: 18344357 [Abstract] [Full Text] [Related]
6. Heterotrophic symbionts of phototrophic consortia: members of a novel diverse cluster of Betaproteobacteria characterized by a tandem rrn operon structure. Pfannes KR, Vogl K, Overmann J. Environ Microbiol; 2007 Nov 22; 9(11):2782-94. PubMed ID: 17922762 [Abstract] [Full Text] [Related]
7. Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in 'Chlorochromatium aggregatum'. Cerqueda-García D, Martínez-Castilla LP, Falcón LI, Delaye L. ISME J; 2014 May 22; 8(5):991-8. PubMed ID: 24285361 [Abstract] [Full Text] [Related]
8. Biogeography, evolution, and diversity of epibionts in phototrophic consortia. Glaeser J, Overmann J. Appl Environ Microbiol; 2004 Aug 22; 70(8):4821-30. PubMed ID: 15294820 [Abstract] [Full Text] [Related]
9. Molecular characterization of the nonphotosynthetic partner bacterium in the consortium "Chlorochromatium aggregatum". Kanzler BE, Pfannes KR, Vogl K, Overmann J. Appl Environ Microbiol; 2005 Nov 22; 71(11):7434-41. PubMed ID: 16269785 [Abstract] [Full Text] [Related]
10. Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium "Chlorochromatium aggregatum". Vogl K, Glaeser J, Pfannes KR, Wanner G, Overmann J. Arch Microbiol; 2006 Jun 22; 185(5):363-72. PubMed ID: 16555074 [Abstract] [Full Text] [Related]
11. Close Interspecies Interactions between Prokaryotes from Sulfureous Environments. Müller J, Overmann J. Front Microbiol; 2011 Jun 22; 2():146. PubMed ID: 21779277 [Abstract] [Full Text] [Related]
12. Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Overmann J, Schubert K. Arch Microbiol; 2002 Mar 22; 177(3):201-8. PubMed ID: 11907675 [Abstract] [Full Text] [Related]
13. Physiology and tactic response of the phototrophic consortium "Chlorochromatium aggregatum". Frostl JM, Overmann J. Arch Microbiol; 1998 Feb 22; 169(2):129-35. PubMed ID: 9446684 [Abstract] [Full Text] [Related]
14. Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Fröstl JM, Overmann J. Arch Microbiol; 2000 Feb 22; 174(1-2):50-8. PubMed ID: 10985742 [Abstract] [Full Text] [Related]
15. Two new motile phototrophic consortia: "Chlorochromatium lunatum" and "Pelochromatium selenoides". Abella CA, Cristina XP, Martinez A, Pibernat I, Vila X. Arch Microbiol; 1998 May 22; 169(5):452-9. PubMed ID: 9560427 [Abstract] [Full Text] [Related]
16. Specific detection of green sulfur bacteria by in situ hybridization with a fluorescently labeled oligonucleotide probe. Tuschak C, Glaeser J, Overmann J. Arch Microbiol; 1999 Mar 22; 171(4):265-72. PubMed ID: 10339808 [Abstract] [Full Text] [Related]
17. Transcriptome of Epibiont Saccharibacteria Nanosynbacter lyticus Strain TM7x During the Establishment of Symbiosis. Hendrickson EL, Bor B, Kerns KA, Lamont EI, Chang Y, Liu J, Cen L, Schulte F, Hardt M, Shi W, He X, McLean JS. J Bacteriol; 2022 Sep 20; 204(9):e0011222. PubMed ID: 35975994 [Abstract] [Full Text] [Related]
18. Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Voiblet C, Duplessis S, Encelot N, Martin F. Plant J; 2001 Jan 20; 25(2):181-91. PubMed ID: 11169194 [Abstract] [Full Text] [Related]
19. Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olavius algarvensis. Wippler J, Kleiner M, Lott C, Gruhl A, Abraham PE, Giannone RJ, Young JC, Hettich RL, Dubilier N. BMC Genomics; 2016 Nov 21; 17(1):942. PubMed ID: 27871231 [Abstract] [Full Text] [Related]
20. RNA-seq analysis of the Rhizobium tropici CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. Pérez-Montaño F, Del Cerro P, Jiménez-Guerrero I, López-Baena FJ, Cubo MT, Hungria M, Megías M, Ollero FJ. BMC Genomics; 2016 Mar 08; 17():198. PubMed ID: 26951045 [Abstract] [Full Text] [Related] Page: [Next] [New Search]