These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


391 related items for PubMed ID: 21967060

  • 1. Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy.
    Kim Chiaw P, Eckford PD, Bear CE.
    Essays Biochem; 2011 Sep 07; 50(1):233-48. PubMed ID: 21967060
    [Abstract] [Full Text] [Related]

  • 2. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone.
    Scott-Ward TS, Amaral MD.
    FEBS J; 2009 Dec 07; 276(23):7097-109. PubMed ID: 19878303
    [Abstract] [Full Text] [Related]

  • 3. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.
    Pasyk S, Li C, Ramjeesingh M, Bear CE.
    Biochem J; 2009 Feb 15; 418(1):185-90. PubMed ID: 18945216
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms.
    Roxo-Rosa M, Xu Z, Schmidt A, Neto M, Cai Z, Soares CM, Sheppard DN, Amaral MD.
    Proc Natl Acad Sci U S A; 2006 Nov 21; 103(47):17891-6. PubMed ID: 17098864
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. HGF stimulation of Rac1 signaling enhances pharmacological correction of the most prevalent cystic fibrosis mutant F508del-CFTR.
    Moniz S, Sousa M, Moraes BJ, Mendes AI, Palma M, Barreto C, Fragata JI, Amaral MD, Matos P.
    ACS Chem Biol; 2013 Feb 15; 8(2):432-42. PubMed ID: 23148778
    [Abstract] [Full Text] [Related]

  • 9. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function.
    Stanton BA.
    Wien Klin Wochenschr; 1997 Jun 27; 109(12-13):457-64. PubMed ID: 9261986
    [Abstract] [Full Text] [Related]

  • 10. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating.
    Cai Z, Palmai-Pallag T, Khuituan P, Mutolo MJ, Boinot C, Liu B, Scott-Ward TS, Callebaut I, Harris A, Sheppard DN.
    J Physiol; 2015 Jun 01; 593(11):2427-46. PubMed ID: 25763566
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Probing conformational rescue induced by a chemical corrector of F508del-cystic fibrosis transmembrane conductance regulator (CFTR) mutant.
    Yu W, Kim Chiaw P, Bear CE.
    J Biol Chem; 2011 Jul 15; 286(28):24714-25. PubMed ID: 21602569
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Mutation specific therapy in CF.
    Kerem E.
    Paediatr Respir Rev; 2006 Jul 15; 7 Suppl 1():S166-9. PubMed ID: 16798551
    [Abstract] [Full Text] [Related]

  • 15. Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells.
    Antigny F, Norez C, Cantereau A, Becq F, Vandebrouck C.
    Respir Res; 2008 Oct 30; 9(1):70. PubMed ID: 18973672
    [Abstract] [Full Text] [Related]

  • 16. [Cystic fibrosis].
    Yoshimura K, Anzai C.
    Nihon Rinsho; 1996 Mar 30; 54(3):825-33. PubMed ID: 8904244
    [Abstract] [Full Text] [Related]

  • 17. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
    Li C, Naren AP.
    Pharmacol Ther; 2005 Nov 30; 108(2):208-23. PubMed ID: 15936089
    [Abstract] [Full Text] [Related]

  • 18. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK, Ju M, Sheppard DN.
    Mol Membr Biol; 2008 Sep 30; 25(6-7):528-38. PubMed ID: 18989824
    [Abstract] [Full Text] [Related]

  • 19. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X, Eisman R, Xu J, Harsch AD, Mulberg AE, Bevins CL, Glick MC, Scanlin TF.
    J Cell Physiol; 1996 Aug 30; 168(2):373-84. PubMed ID: 8707873
    [Abstract] [Full Text] [Related]

  • 20. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM, Nogueira P, Mendes F, Penque D, Amaral MD.
    Biochem J; 2002 Sep 15; 366(Pt 3):797-806. PubMed ID: 12069690
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.