These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
300 related items for PubMed ID: 21971088
1. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein. Zhang Y, Zhang H, Hollins J, Webb ME, Zhou D. Phys Chem Chem Phys; 2011 Nov 21; 13(43):19427-36. PubMed ID: 21971088 [Abstract] [Full Text] [Related]
2. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H. J Am Chem Soc; 2004 Jan 14; 126(1):301-10. PubMed ID: 14709096 [Abstract] [Full Text] [Related]
3. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H, Schöps O, Woggon U, Niemeyer CM. J Am Chem Soc; 2008 Apr 09; 130(14):4815-27. PubMed ID: 18338889 [Abstract] [Full Text] [Related]
4. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, Armstrong A, Dawson PE, Hildebrandt N, Medintz IL. J Am Chem Soc; 2012 Jan 25; 134(3):1876-91. PubMed ID: 22220737 [Abstract] [Full Text] [Related]
5. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly. Field LD, Walper SA, Susumu K, Oh E, Medintz IL, Delehanty JB. Sensors (Basel); 2015 Dec 04; 15(12):30457-68. PubMed ID: 26690153 [Abstract] [Full Text] [Related]
6. Quantum dot-based resonance energy transfer and its growing application in biology. Medintz IL, Mattoussi H. Phys Chem Chem Phys; 2009 Jan 07; 11(1):17-45. PubMed ID: 19081907 [Abstract] [Full Text] [Related]
7. Solution-phase single quantum dot fluorescence resonance energy transfer. Pons T, Medintz IL, Wang X, English DS, Mattoussi H. J Am Chem Soc; 2006 Nov 29; 128(47):15324-31. PubMed ID: 17117885 [Abstract] [Full Text] [Related]
8. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR, Medintz IL, Mattoussi H. Chemphyschem; 2006 Jan 16; 7(1):47-57. PubMed ID: 16370019 [Abstract] [Full Text] [Related]
13. Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform. Long F, Gu C, Gu AZ, Shi H. Anal Chem; 2012 Apr 17; 84(8):3646-53. PubMed ID: 22455400 [Abstract] [Full Text] [Related]
14. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates. Stewart MH, Huston AL, Scott AM, Oh E, Algar WR, Deschamps JR, Susumu K, Jain V, Prasuhn DE, Blanco-Canosa J, Dawson PE, Medintz IL. ACS Nano; 2013 Oct 22; 7(10):9489-505. PubMed ID: 24128175 [Abstract] [Full Text] [Related]
15. Dithiocarbamates as capping ligands for water-soluble quantum dots. Zhang Y, Schnoes AM, Clapp AR. ACS Appl Mater Interfaces; 2010 Nov 22; 2(11):3384-95. PubMed ID: 21053924 [Abstract] [Full Text] [Related]
16. In-capillary probing of quantum dots and fluorescent protein self-assembly and displacement using Förster resonance energy transfer. Wang J, Fan J, Li J, Liu L, Wang J, Jiang P, Liu X, Qiu L. J Sep Sci; 2017 Feb 22; 40(4):933-939. PubMed ID: 27935249 [Abstract] [Full Text] [Related]
17. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. Algar WR, Khachatrian A, Melinger JS, Huston AL, Stewart MH, Susumu K, Blanco-Canosa JB, Oh E, Dawson PE, Medintz IL. J Am Chem Soc; 2017 Jan 11; 139(1):363-372. PubMed ID: 28009161 [Abstract] [Full Text] [Related]