These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
442 related items for PubMed ID: 21972506
1. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate. Dosnon-Olette R, Couderchet M, Oturan MA, Oturan N, Eullaffroy P. Int J Phytoremediation; 2011 Jul; 13(6):601-12. PubMed ID: 21972506 [Abstract] [Full Text] [Related]
2. Toxicity and removal of pesticides by selected aquatic plants. Olette R, Couderchet M, Biagianti S, Eullaffroy P. Chemosphere; 2008 Feb; 70(8):1414-21. PubMed ID: 17980900 [Abstract] [Full Text] [Related]
3. Fungicides and herbicide removal in Scenedesmus cell suspensions. Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P. Chemosphere; 2010 Mar; 79(2):117-23. PubMed ID: 20185160 [Abstract] [Full Text] [Related]
4. Phytotoxicity assessment of isoproturon on growth and physiology of non-targeted aquatic plant Lemna minor L. - A comparison of continuous and pulsed exposure with equivalent time-averaged concentrations. Varga M, Horvatić J, Žurga P, Brusić I, Moslavac M. Aquat Toxicol; 2019 Aug; 213():105225. PubMed ID: 31220755 [Abstract] [Full Text] [Related]
5. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Sikorski Ł, Baciak M, Bęś A, Adomas B. Aquat Toxicol; 2019 Apr; 209():70-80. PubMed ID: 30739875 [Abstract] [Full Text] [Related]
6. Arsenic uptake by Lemna minor in hydroponic system. Goswami C, Majumder A, Misra AK, Bandyopadhyay K. Int J Phytoremediation; 2014 Apr; 16(7-12):1221-7. PubMed ID: 24933913 [Abstract] [Full Text] [Related]
7. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. Dosnon-Olette R, Couderchet M, El Arfaoui A, Sayen S, Eullaffroy P. Sci Total Environ; 2010 Apr 15; 408(10):2254-9. PubMed ID: 20156640 [Abstract] [Full Text] [Related]
8. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points. Sobrero MC, Rimoldi F, Ronco AE. Bull Environ Contam Toxicol; 2007 Nov 15; 79(5):537-43. PubMed ID: 17940715 [Abstract] [Full Text] [Related]
9. Cadmium removal by Lemna minor and Spirodela polyrhiza. Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K. Int J Phytoremediation; 2014 Nov 15; 16(7-12):1119-32. PubMed ID: 24933906 [Abstract] [Full Text] [Related]
10. Growth inhibition and recovery patterns of common duckweed Lemna minor L. after repeated exposure to isoproturon. Varga M, Žurga P, Brusić I, Horvatić J, Moslavac M. Ecotoxicology; 2020 Nov 15; 29(9):1538-1551. PubMed ID: 32797394 [Abstract] [Full Text] [Related]
11. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide. Obermeier M, Schröder CA, Helmreich B, Schröder P. Environ Sci Pollut Res Int; 2015 Dec 15; 22(23):18495-507. PubMed ID: 26286797 [Abstract] [Full Text] [Related]
12. Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. Kostopoulou S, Ntatsi G, Arapis G, Aliferis KA. Chemosphere; 2020 Jan 15; 239():124582. PubMed ID: 31514011 [Abstract] [Full Text] [Related]
13. Comparison of different physiological parameter responses in Lemna minor and Scenedesmus obliquus exposed to herbicide flumioxazin. Geoffroy L, Frankart C, Eullaffroy P. Environ Pollut; 2004 Sep 15; 131(2):233-41. PubMed ID: 15234090 [Abstract] [Full Text] [Related]
14. The impact of humic acid on toxicity of individual herbicides and their mixtures to aquatic macrophytes. Mihajlović V, Tomić T, Tubić A, Molnar Jazić J, Ivančev Tumbas I, Šunjka D, Lazić S, Teodorović I. Environ Sci Pollut Res Int; 2019 Aug 15; 26(23):23571-23582. PubMed ID: 31203541 [Abstract] [Full Text] [Related]
15. Light modulated toxicity of isoproturon toward natural stream periphyton photosynthesis: a comparison between constant and dynamic light conditions. Laviale M, Prygiel J, Créach A. Aquat Toxicol; 2010 May 10; 97(4):334-42. PubMed ID: 20116867 [Abstract] [Full Text] [Related]
16. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). Prasertsup P, Ariyakanon N. Int J Phytoremediation; 2011 Apr 10; 13(4):383-95. PubMed ID: 21598800 [Abstract] [Full Text] [Related]
17. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Megateli S, Semsari S, Couderchet M. Ecotoxicol Environ Saf; 2009 Sep 10; 72(6):1774-80. PubMed ID: 19505721 [Abstract] [Full Text] [Related]
18. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides? Nuttens A, Chatellier S, Devin S, Guignard C, Lenouvel A, Gross EM. Aquat Toxicol; 2016 Aug 10; 177():355-64. PubMed ID: 27371928 [Abstract] [Full Text] [Related]
19. Effect of glyphosate acid on biochemical markers of periphyton exposed in outdoor mesocosms in the presence and absence of the mussel Limnoperna fortunei. Iummato MM, Pizarro H, Cataldo D, Di Fiori E, Dos Santos Afonso M, Del Carmen Ríos de Molina M, Juárez ÁB. Environ Toxicol Chem; 2017 Jul 10; 36(7):1775-1784. PubMed ID: 28397987 [Abstract] [Full Text] [Related]
20. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. Annett R, Habibi HR, Hontela A. J Appl Toxicol; 2014 May 10; 34(5):458-79. PubMed ID: 24615870 [Abstract] [Full Text] [Related] Page: [Next] [New Search]