These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 21972518

  • 1. Assessment of bioaccumulation of heavy metal by Pteris vittata L. growing in the vicinity of fly ash.
    Kumari A, Lal B, Pakade YB, Chand P.
    Int J Phytoremediation; 2011 Sep; 13(8):779-87. PubMed ID: 21972518
    [Abstract] [Full Text] [Related]

  • 2. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.
    Fayiga AO, Ma LQ, Cao X, Rathinasabapathi B.
    Environ Pollut; 2004 Nov; 132(2):289-96. PubMed ID: 15312941
    [Abstract] [Full Text] [Related]

  • 3. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.
    Kumari A, Lal B, Rai UN.
    Int J Phytoremediation; 2016 Nov; 18(6):592-7. PubMed ID: 26442874
    [Abstract] [Full Text] [Related]

  • 4. Arsenic and heavy metal accumulation by Pteris vittata L. and P. umbrosa R. Br.
    Koller CE, Patrick JW, Rose RJ, Offler CE, MacFarlane GR.
    Bull Environ Contam Toxicol; 2008 Feb; 80(2):128-33. PubMed ID: 18183339
    [Abstract] [Full Text] [Related]

  • 5. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S, Rana V, Kumar A, Maiti SK.
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [Abstract] [Full Text] [Related]

  • 6. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India.
    Pandey SK, Bhattacharya T, Chakraborty S.
    Int J Phytoremediation; 2016 Oct; 18(1):87-93. PubMed ID: 26147810
    [Abstract] [Full Text] [Related]

  • 7. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P, Guo Z, Xiao X, Peng C, Feng W, Xin L, Xu Z.
    Sci Total Environ; 2019 Feb 10; 650(Pt 1):594-603. PubMed ID: 30205349
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N, Swanwick S, Zhao FJ, McGrath SP.
    Environ Pollut; 2004 Nov 10; 132(1):113-20. PubMed ID: 15276279
    [Abstract] [Full Text] [Related]

  • 10. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO, Ma LQ.
    Sci Total Environ; 2006 Apr 15; 359(1-3):17-25. PubMed ID: 15985282
    [Abstract] [Full Text] [Related]

  • 11. Heavy metal accumulation in agricultural soils around a coal fired thermal power plant (Farakka) in India.
    Sengupta S, Chatterjee T, Ghosh PB, Saha T.
    J Environ Sci Eng; 2010 Oct 15; 52(4):299-306. PubMed ID: 22312798
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
    Danh LT, Truong P, Mammucari R, Foster N.
    Int J Phytoremediation; 2014 Oct 15; 16(5):429-53. PubMed ID: 24912227
    [Abstract] [Full Text] [Related]

  • 14. Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil.
    Fayiga AO, Ma LQ, Zhou Q.
    Environ Pollut; 2007 Jun 15; 147(3):737-42. PubMed ID: 17129648
    [Abstract] [Full Text] [Related]

  • 15. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.
    Mandal A, Purakayastha TJ, Patra AK, Sanyal SK.
    Int J Phytoremediation; 2012 Jul 15; 14(6):621-8. PubMed ID: 22908631
    [Abstract] [Full Text] [Related]

  • 16. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI, Santos JA, Ma LQ.
    Environ Pollut; 2008 Jul 15; 154(2):212-8. PubMed ID: 18037547
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Arsenic uptake and translocation by plants in pot and field experiments.
    Ciurli A, Lenzi L, Alpi A, Pardossi A.
    Int J Phytoremediation; 2014 Jul 15; 16(7-12):804-23. PubMed ID: 24933886
    [Abstract] [Full Text] [Related]

  • 19. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests.
    Mandal A, Purakayastha TJ, Patra AK, Sanyal SK.
    Int J Phytoremediation; 2012 Dec 15; 14(10):978-95. PubMed ID: 22908659
    [Abstract] [Full Text] [Related]

  • 20. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions.
    Lei M, Wan X, Guo G, Yang J, Chen T.
    Environ Sci Pollut Res Int; 2018 Jan 15; 25(1):124-131. PubMed ID: 27928750
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.