These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


465 related items for PubMed ID: 21973360

  • 1. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J, Tiaden S, Zeng FG.
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [Abstract] [Full Text] [Related]

  • 2. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB, Riss D, Liepins R, Rader T, Keck T, Keintzel T, Kaider A, Baumgartner WD, Gstoettner W, Arnoldner C.
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [Abstract] [Full Text] [Related]

  • 3. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D, Schwalje A, Gantz B, Choi I.
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [Abstract] [Full Text] [Related]

  • 4. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L, Hohmann V, Büchner A, Schädler MR, Jürgens T.
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [Abstract] [Full Text] [Related]

  • 5. Binaural cue sensitivity in cochlear implant recipients with acoustic hearing preservation.
    Gifford RH, Stecker GC.
    Hear Res; 2020 May; 390():107929. PubMed ID: 32182551
    [Abstract] [Full Text] [Related]

  • 6. Acoustic cue integration in speech intonation recognition with cochlear implants.
    Peng SC, Chatterjee M, Lu N.
    Trends Amplif; 2012 Jun; 16(2):67-82. PubMed ID: 22790392
    [Abstract] [Full Text] [Related]

  • 7. Speech perception in simulated electric hearing exploits information-bearing acoustic change.
    Stilp CE, Goupell MJ, Kluender KR.
    J Acoust Soc Am; 2013 Feb; 133(2):EL136-41. PubMed ID: 23363194
    [Abstract] [Full Text] [Related]

  • 8. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M, Reilly RB, Zeng FG.
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [Abstract] [Full Text] [Related]

  • 9. Voice gender differences and separation of simultaneous talkers in cochlear implant users with residual hearing.
    Visram AS, Kluk K, McKay CM.
    J Acoust Soc Am; 2012 Aug; 132(2):EL135-41. PubMed ID: 22894312
    [Abstract] [Full Text] [Related]

  • 10. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users.
    Li T, Fu QJ.
    Int J Audiol; 2011 Aug; 50(8):498-502. PubMed ID: 21696330
    [Abstract] [Full Text] [Related]

  • 11. Combined spectral and temporal enhancement to improve cochlear-implant speech perception.
    Bhattacharya A, Vandali A, Zeng FG.
    J Acoust Soc Am; 2011 Nov; 130(5):2951-60. PubMed ID: 22087923
    [Abstract] [Full Text] [Related]

  • 12. Pupillometry Reveals That Context Benefit in Speech Perception Can Be Disrupted by Later-Occurring Sounds, Especially in Listeners With Cochlear Implants.
    Winn MB, Moore AN.
    Trends Hear; 2018 Nov; 22():2331216518808962. PubMed ID: 30375282
    [Abstract] [Full Text] [Related]

  • 13. Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners.
    Goldsworthy RL, Delhorne LA, Braida LD, Reed CM.
    Trends Amplif; 2013 Mar; 17(1):27-44. PubMed ID: 23429419
    [Abstract] [Full Text] [Related]

  • 14. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.
    Oxenham AJ, Kreft HA.
    Trends Hear; 2014 Oct 13; 18():. PubMed ID: 25315376
    [Abstract] [Full Text] [Related]

  • 15. Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy.
    Hazrati O, Sadjadi SO, Loizou PC, Hansen JH.
    J Acoust Soc Am; 2013 Nov 13; 134(5):3759-65. PubMed ID: 24180786
    [Abstract] [Full Text] [Related]

  • 16. The impact of reverberant self-masking and overlap-masking effects on speech intelligibility by cochlear implant listeners (L).
    Kokkinakis K, Loizou PC.
    J Acoust Soc Am; 2011 Sep 13; 130(3):1099-102. PubMed ID: 21895052
    [Abstract] [Full Text] [Related]

  • 17. Consonant recognition as a function of the number of stimulation channels in the Hybrid short-electrode cochlear implant.
    Reiss LA, Turner CW, Karsten SA, Erenberg SR, Taylor J, Gantz BJ.
    J Acoust Soc Am; 2012 Nov 13; 132(5):3406-17. PubMed ID: 23145621
    [Abstract] [Full Text] [Related]

  • 18. Overlapping frequency coverage and simulated spatial cue effects on bimodal (electrical and acoustical) sentence recognition in noise.
    Green T, Faulkner A, Rosen S.
    J Acoust Soc Am; 2014 Feb 13; 135(2):851-61. PubMed ID: 25234893
    [Abstract] [Full Text] [Related]

  • 19. Masking release and the contribution of obstruent consonants on speech recognition in noise by cochlear implant users.
    Li N, Loizou PC.
    J Acoust Soc Am; 2010 Sep 13; 128(3):1262-71. PubMed ID: 20815461
    [Abstract] [Full Text] [Related]

  • 20. Combining acoustic and electric stimulation in the service of speech recognition.
    Dorman MF, Gifford RH.
    Int J Audiol; 2010 Dec 13; 49(12):912-9. PubMed ID: 20874053
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.