These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 21974512

  • 1. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.
    Bardhan JP, Knepley MG.
    J Chem Phys; 2011 Sep 28; 135(12):124107. PubMed ID: 21974512
    [Abstract] [Full Text] [Related]

  • 2. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.
    Bardhan JP.
    J Chem Phys; 2008 Oct 14; 129(14):144105. PubMed ID: 19045132
    [Abstract] [Full Text] [Related]

  • 3. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.
    Bardhan JP, Knepley MG, Anitescu M.
    J Chem Phys; 2009 Mar 14; 130(10):104108. PubMed ID: 19292524
    [Abstract] [Full Text] [Related]

  • 4. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding.
    Kreienkamp AB, Liu LY, Minkara MS, Knepley MG, Bardhan JP, Radhakrishnan ML.
    Mol Based Math Biol; 2013 Jun 14; 1():124-150. PubMed ID: 24466561
    [Abstract] [Full Text] [Related]

  • 5. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV, Cramer CJ, Truhlar DG.
    J Phys Chem B; 2009 May 07; 113(18):6378-96. PubMed ID: 19366259
    [Abstract] [Full Text] [Related]

  • 6. Restoring charge asymmetry in continuum electrostatics calculations of hydration free energies.
    Purisima EO, Sulea T.
    J Phys Chem B; 2009 Jun 18; 113(24):8206-9. PubMed ID: 19459599
    [Abstract] [Full Text] [Related]

  • 7. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.
    Bauer S, Mathias G, Tavan P.
    J Chem Phys; 2014 Mar 14; 140(10):104102. PubMed ID: 24628147
    [Abstract] [Full Text] [Related]

  • 8. Numerical solution of boundary-integral equations for molecular electrostatics.
    Bardhan JP.
    J Chem Phys; 2009 Mar 07; 130(9):094102. PubMed ID: 19275391
    [Abstract] [Full Text] [Related]

  • 9. Analytical electrostatics for biomolecules: beyond the generalized Born approximation.
    Sigalov G, Fenley A, Onufriev A.
    J Chem Phys; 2006 Mar 28; 124(12):124902. PubMed ID: 16599720
    [Abstract] [Full Text] [Related]

  • 10. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X, Cui Q.
    J Phys Chem B; 2013 Feb 21; 117(7):2005-18. PubMed ID: 23347181
    [Abstract] [Full Text] [Related]

  • 11. Implicit electrostatic solvent model with continuous dielectric permittivity function.
    Basilevsky MV, Grigoriev FV, Nikitina EA, Leszczynski J.
    J Phys Chem B; 2010 Feb 25; 114(7):2457-66. PubMed ID: 20166682
    [Abstract] [Full Text] [Related]

  • 12. Prediction of SAMPL-1 hydration free energies using a continuum electrostatics-dispersion model.
    Sulea T, Wanapun D, Dennis S, Purisima EO.
    J Phys Chem B; 2009 Apr 09; 113(14):4511-20. PubMed ID: 19267492
    [Abstract] [Full Text] [Related]

  • 13. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX, Yu L, Gong LD, Liu C, Yang ZZ.
    J Chem Phys; 2011 May 21; 134(19):194115. PubMed ID: 21599052
    [Abstract] [Full Text] [Related]

  • 14. Implicit solvation based on generalized Born theory in different dielectric environments.
    Feig M, Im W, Brooks CL.
    J Chem Phys; 2004 Jan 08; 120(2):903-11. PubMed ID: 15267926
    [Abstract] [Full Text] [Related]

  • 15. Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide.
    Totrov M, Abagyan R.
    Biopolymers; 2001 Jan 08; 60(2):124-33. PubMed ID: 11455546
    [Abstract] [Full Text] [Related]

  • 16. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators.
    Bardhan JP, Knepley MG, Brune P.
    Mol Based Math Biol; 2015 Jan 08; 3(1):1-22. PubMed ID: 26273581
    [Abstract] [Full Text] [Related]

  • 17. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent.
    Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG.
    J Chem Theory Comput; 2009 Sep 08; 5(9):2284-300. PubMed ID: 26616615
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q, Wang J, Zhao HK, Luo R.
    J Chem Phys; 2009 Apr 14; 130(14):145101. PubMed ID: 19368474
    [Abstract] [Full Text] [Related]

  • 20. Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins.
    Bardhan JP.
    J Chem Phys; 2011 Sep 14; 135(10):104113. PubMed ID: 21932882
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.