These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


296 related items for PubMed ID: 21983555

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Thiol-disulfide redox proteomics in plant research.
    Muthuramalingam M, Dietz KJ, Ströher E.
    Methods Mol Biol; 2010; 639():219-38. PubMed ID: 20387049
    [Abstract] [Full Text] [Related]

  • 23. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S, Boronat S, Hidalgo E.
    Biochemistry; 2014 Apr 29; 53(16):2560-80. PubMed ID: 24738931
    [Abstract] [Full Text] [Related]

  • 24. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.
    Vogelsang L, Eirich J, Finkemeier I, Dietz KJ.
    Methods Mol Biol; 2024 Apr 29; 2832():99-113. PubMed ID: 38869790
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.
    Cuddihy SL, Baty JW, Brown KK, Winterbourn CC, Hampton MB.
    Methods Mol Biol; 2009 Apr 29; 519():363-75. PubMed ID: 19381595
    [Abstract] [Full Text] [Related]

  • 27. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M.
    Mitochondrion; 2017 Mar 29; 33():72-83. PubMed ID: 27456428
    [Abstract] [Full Text] [Related]

  • 28. Proteomic approaches to the characterization of protein thiol modification.
    Chouchani ET, James AM, Fearnley IM, Lilley KS, Murphy MP.
    Curr Opin Chem Biol; 2011 Feb 29; 15(1):120-8. PubMed ID: 21130020
    [Abstract] [Full Text] [Related]

  • 29. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y, Carroll KS.
    Acc Chem Res; 2020 Jan 21; 53(1):20-31. PubMed ID: 31869209
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Methods for the determination and quantification of the reactive thiol proteome.
    Hill BG, Reily C, Oh JY, Johnson MS, Landar A.
    Free Radic Biol Med; 2009 Sep 15; 47(6):675-83. PubMed ID: 19527783
    [Abstract] [Full Text] [Related]

  • 33. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI, Jakob U.
    Antioxid Redox Signal; 2006 Sep 15; 8(5-6):763-72. PubMed ID: 16771668
    [Abstract] [Full Text] [Related]

  • 34. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C, Leichert LI.
    Methods Mol Biol; 2012 Sep 15; 893():387-403. PubMed ID: 22665313
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Quantifying reversible oxidation of protein thiols in photosynthetic organisms.
    Slade WO, Werth EG, McConnell EW, Alvarez S, Hicks LM.
    J Am Soc Mass Spectrom; 2015 Apr 15; 26(4):631-40. PubMed ID: 25698223
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.
    Murray CI, Uhrigshardt H, O'Meally RN, Cole RN, Van Eyk JE.
    Mol Cell Proteomics; 2012 Feb 15; 11(2):M111.013441. PubMed ID: 22126794
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.