These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 21984848
1. Transforming growth factor-β1-induced transcript 1 protein, a novel marker for smooth muscle contractile phenotype, is regulated by serum response factor/myocardin protein. Wang X, Hu G, Betts C, Harmon EY, Keller RS, Van De Water L, Zhou J. J Biol Chem; 2011 Dec 02; 286(48):41589-41599. PubMed ID: 21984848 [Abstract] [Full Text] [Related]
2. Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins. Rensen SS, Niessen PM, Long X, Doevendans PA, Miano JM, van Eys GJ. Cardiovasc Res; 2006 Apr 01; 70(1):136-45. PubMed ID: 16451796 [Abstract] [Full Text] [Related]
3. Purine-rich element binding protein B attenuates the coactivator function of myocardin by a novel molecular mechanism of smooth muscle gene repression. Ferris LA, Foote AT, Wang SX, Kelm RJ. Mol Cell Biochem; 2021 Aug 01; 476(8):2899-2916. PubMed ID: 33743134 [Abstract] [Full Text] [Related]
4. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor. Zhao J, Wu W, Zhang W, Lu YW, Tou E, Ye J, Gao P, Jourd'heuil D, Singer HA, Wu M, Long X. FASEB J; 2017 Jun 01; 31(6):2576-2591. PubMed ID: 28258189 [Abstract] [Full Text] [Related]
5. The smooth muscle cell-restricted KCNMB1 ion channel subunit is a direct transcriptional target of serum response factor and myocardin. Long X, Tharp DL, Georger MA, Slivano OJ, Lee MY, Wamhoff BR, Bowles DK, Miano JM. J Biol Chem; 2009 Nov 27; 284(48):33671-82. PubMed ID: 19801679 [Abstract] [Full Text] [Related]
6. Smooth muscle expression of lipoma preferred partner is mediated by an alternative intronic promoter that is regulated by serum response factor/myocardin. Petit MM, Lindskog H, Larsson E, Wasteson P, Athley E, Breuer S, Angstenberger M, Hertfelder D, Mattsson E, Nordheim A, Nelander S, Lindahl P. Circ Res; 2008 Jul 03; 103(1):61-9. PubMed ID: 18511849 [Abstract] [Full Text] [Related]
7. Myocardin: a component of a molecular switch for smooth muscle differentiation. Chen J, Kitchen CM, Streb JW, Miano JM. J Mol Cell Cardiol; 2002 Oct 03; 34(10):1345-56. PubMed ID: 12392995 [Abstract] [Full Text] [Related]
8. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS. Mol Cell Biol; 2003 Apr 03; 23(7):2425-37. PubMed ID: 12640126 [Abstract] [Full Text] [Related]
9. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function. Liu F, Wang X, Hu G, Wang Y, Zhou J. J Biol Chem; 2014 Feb 07; 289(6):3308-16. PubMed ID: 24344135 [Abstract] [Full Text] [Related]
10. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Yoshida T, Sinha S, Dandré F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, Owens GK. Circ Res; 2003 May 02; 92(8):856-64. PubMed ID: 12663482 [Abstract] [Full Text] [Related]
11. CARMN Is an Evolutionarily Conserved Smooth Muscle Cell-Specific LncRNA That Maintains Contractile Phenotype by Binding Myocardin. Dong K, Shen J, He X, Hu G, Wang L, Osman I, Bunting KM, Dixon-Melvin R, Zheng Z, Xin H, Xiang M, Vazdarjanova A, Fulton DJR, Zhou J. Circulation; 2021 Dec 07; 144(23):1856-1875. PubMed ID: 34694145 [Abstract] [Full Text] [Related]
12. Repression of smooth muscle differentiation by a novel high mobility group box-containing protein, HMG2L1. Zhou J, Hu G, Wang X. J Biol Chem; 2010 Jul 23; 285(30):23177-85. PubMed ID: 20511232 [Abstract] [Full Text] [Related]
13. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN. Nature; 2004 Mar 11; 428(6979):185-9. PubMed ID: 15014501 [Abstract] [Full Text] [Related]
14. Mechanisms responsible for the promoter-specific effects of myocardin. Zhou J, Herring BP. J Biol Chem; 2005 Mar 18; 280(11):10861-9. PubMed ID: 15657056 [Abstract] [Full Text] [Related]
15. HERP1 inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CArG box. Doi H, Iso T, Yamazaki M, Akiyama H, Kanai H, Sato H, Kawai-Kowase K, Tanaka T, Maeno T, Okamoto E, Arai M, Kedes L, Kurabayashi M. Arterioscler Thromb Vasc Biol; 2005 Nov 18; 25(11):2328-34. PubMed ID: 16151017 [Abstract] [Full Text] [Related]
16. Thymine DNA glycosylase represses myocardin-induced smooth muscle cell differentiation by competing with serum response factor for myocardin binding. Zhou J, Blue EK, Hu G, Herring BP. J Biol Chem; 2008 Dec 19; 283(51):35383-92. PubMed ID: 18945672 [Abstract] [Full Text] [Related]
17. 5' CArG degeneracy in smooth muscle alpha-actin is required for injury-induced gene suppression in vivo. Hendrix JA, Wamhoff BR, McDonald OG, Sinha S, Yoshida T, Owens GK. J Clin Invest; 2005 Feb 19; 115(2):418-27. PubMed ID: 15690088 [Abstract] [Full Text] [Related]
18. Coronary Disease-Associated Gene TCF21 Inhibits Smooth Muscle Cell Differentiation by Blocking the Myocardin-Serum Response Factor Pathway. Nagao M, Lyu Q, Zhao Q, Wirka RC, Bagga J, Nguyen T, Cheng P, Kim JB, Pjanic M, Miano JM, Quertermous T. Circ Res; 2020 Feb 14; 126(4):517-529. PubMed ID: 31815603 [Abstract] [Full Text] [Related]