These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


100 related items for PubMed ID: 219916

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM, Ballou DP, Whittaker JW.
    Biochemistry; 1998 Jun 09; 37(23):8426-36. PubMed ID: 9622494
    [Abstract] [Full Text] [Related]

  • 3. The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity.
    Salvato B, Santamaria M, Beltramini M, Alzuet G, Casella L.
    Biochemistry; 1998 Oct 06; 37(40):14065-77. PubMed ID: 9760242
    [Abstract] [Full Text] [Related]

  • 4. o-Diphenol oxidase activity of molluscan hemocyanins.
    Hristova R, Dolashki A, Voelter W, Stevanovic S, Dolashka-Angelova P.
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Mar 06; 149(3):439-46. PubMed ID: 18162195
    [Abstract] [Full Text] [Related]

  • 5. [Spectral characteristics of the mechanism of oxidase activity of ceruloplasmin].
    Vasil'ev VB, Neĭfakh SA, Rusakov DV, Iakovleva TIu, Kholmogorov VE.
    Biokhimiia; 1988 Apr 06; 53(4):620-5. PubMed ID: 2840128
    [Abstract] [Full Text] [Related]

  • 6. ESR identification of free radicals formed from the oxidation of catechol estrogens by Cu2+.
    Seacat AM, Kuppusamy P, Zweier JL, Yager JD.
    Arch Biochem Biophys; 1997 Nov 01; 347(1):45-52. PubMed ID: 9344463
    [Abstract] [Full Text] [Related]

  • 7. An electron spin resonance study of free radicals from catechol estrogens.
    Kalyanaraman B, Hintz P, Sealy RC.
    Fed Proc; 1986 Sep 01; 45(10):2477-84. PubMed ID: 3017766
    [Abstract] [Full Text] [Related]

  • 8. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U, Ranguelova K, Kappl R, Hüttermann J, Fetzner S.
    Biochemistry; 2004 Nov 16; 43(45):14485-99. PubMed ID: 15533053
    [Abstract] [Full Text] [Related]

  • 9. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism.
    Welford RW, Lam A, Mirica LM, Klinman JP.
    Biochemistry; 2007 Sep 25; 46(38):10817-27. PubMed ID: 17760423
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions.
    Barik A, Mishra B, Shen L, Mohan H, Kadam RM, Dutta S, Zhang HY, Priyadarsini KI.
    Free Radic Biol Med; 2005 Sep 15; 39(6):811-22. PubMed ID: 16109310
    [Abstract] [Full Text] [Related]

  • 11. [Stability and catalytic properties of o-diphenol oxidase. 2. Oxidation of monophenols].
    Butovich IA.
    Ukr Biokhim Zh (1978); 1986 Sep 15; 58(1):16-21. PubMed ID: 3080836
    [Abstract] [Full Text] [Related]

  • 12. Ellagic acid: characterization as substrate of polyphenol oxidase.
    Muñoz-Muñoz JL, Garcia-Molina F, Garcia-Molina M, Tudela J, García-Cánovas F, Rodriguez-Lopez JN.
    IUBMB Life; 2009 Feb 15; 61(2):171-7. PubMed ID: 18925653
    [Abstract] [Full Text] [Related]

  • 13. Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin.
    Campello S, Beltramini M, Giordano G, Di Muro P, Marino SM, Bubacco L.
    Arch Biochem Biophys; 2008 Mar 15; 471(2):159-67. PubMed ID: 18237542
    [Abstract] [Full Text] [Related]

  • 14. ESR ST study of hydroxyl radical generation in wet peroxide system catalyzed by heterogeneous ruthenium.
    Rokhina EV, Golovina EA, As Hv, Virkutyte J.
    Chemosphere; 2009 Sep 15; 77(1):148-50. PubMed ID: 19487011
    [Abstract] [Full Text] [Related]

  • 15. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses.
    Fenoglio I, Greco G, Livraghi S, Fubini B.
    Chemistry; 2009 Sep 15; 15(18):4614-21. PubMed ID: 19291716
    [Abstract] [Full Text] [Related]

  • 16. Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.
    Wachter RM, Branchaud BP.
    Biochemistry; 1996 Nov 12; 35(45):14425-35. PubMed ID: 8916929
    [Abstract] [Full Text] [Related]

  • 17. Catecholase activity associated with copper-S100B.
    Senior SZ, Mans LL, VanGuilder HD, Kelly KA, Hendrich MP, Elgren TE.
    Biochemistry; 2003 Apr 22; 42(15):4392-7. PubMed ID: 12693934
    [Abstract] [Full Text] [Related]

  • 18. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.
    Liu Y, Wu H, Chong Y, Wamer WG, Xia Q, Cai L, Nie Z, Fu PP, Yin JJ.
    ACS Appl Mater Interfaces; 2015 Sep 09; 7(35):19709-17. PubMed ID: 26305170
    [Abstract] [Full Text] [Related]

  • 19. Studies of electron spin resonance on bilirubin free radicals.
    Yang ZH, Wang K, Liu XT.
    Sci China B; 1992 Sep 09; 35(9):1093-100. PubMed ID: 1335728
    [Abstract] [Full Text] [Related]

  • 20. Selective oxygenation of 4,4'-dimethylbiphenyl with molecular oxygen, catalyzed by 9-phenyl-10-methylacridinium ion via photoinduced electron transfer.
    Suga K, Ohkubo K, Fukuzumi S.
    J Phys Chem A; 2005 Nov 10; 109(44):10168-75. PubMed ID: 16838937
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.