These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 21995537

  • 1. A growth factor delivery system for chondrogenic induction of infrapatellar fat pad-derived stem cells in fibrin hydrogels.
    Ahearne M, Buckley CT, Kelly DJ.
    Biotechnol Appl Biochem; 2011; 58(5):345-52. PubMed ID: 21995537
    [Abstract] [Full Text] [Related]

  • 2. Enhanced chondrogenesis of adipose-derived stem cells by the controlled release of transforming growth factor-beta1 from hybrid microspheres.
    Han Y, Wei Y, Wang S, Song Y.
    Gerontology; 2009; 55(5):592-9. PubMed ID: 19672054
    [Abstract] [Full Text] [Related]

  • 3. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering.
    Cai DZ, Zeng C, Quan DP, Bu LS, Wang K, Lu HD, Li XF.
    Chin Med J (Engl); 2007 Feb 05; 120(3):197-203. PubMed ID: 17355821
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration.
    Almeida HV, Eswaramoorthy R, Cunniffe GM, Buckley CT, O'Brien FJ, Kelly DJ.
    Acta Biomater; 2016 May 05; 36():55-62. PubMed ID: 26961807
    [Abstract] [Full Text] [Related]

  • 7. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications.
    Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG.
    Biomaterials; 2005 Dec 05; 26(34):7095-103. PubMed ID: 16023196
    [Abstract] [Full Text] [Related]

  • 8. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells.
    Almeida HV, Liu Y, Cunniffe GM, Mulhall KJ, Matsiko A, Buckley CT, O'Brien FJ, Kelly DJ.
    Acta Biomater; 2014 Oct 05; 10(10):4400-9. PubMed ID: 24907658
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Induction of chondrogenesis and expression of superficial zone protein (SZP)/lubricin by mesenchymal progenitors in the infrapatellar fat pad of the knee joint treated with TGF-beta1 and BMP-7.
    Lee SY, Nakagawa T, Reddi AH.
    Biochem Biophys Res Commun; 2008 Nov 07; 376(1):148-53. PubMed ID: 18774772
    [Abstract] [Full Text] [Related]

  • 11. Preparation of TGF-β1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells.
    Jung HH, Park K, Han DK.
    J Control Release; 2010 Oct 01; 147(1):84-91. PubMed ID: 20599451
    [Abstract] [Full Text] [Related]

  • 12. Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells.
    Buckley CT, Vinardell T, Thorpe SD, Haugh MG, Jones E, McGonagle D, Kelly DJ.
    J Biomech; 2010 Mar 22; 43(5):920-6. PubMed ID: 20005518
    [Abstract] [Full Text] [Related]

  • 13. Release kinetics of transforming growth factor-beta1 from fibrin clots.
    Giannoni P, Hunziker EB.
    Biotechnol Bioeng; 2003 Jul 05; 83(1):121-3. PubMed ID: 12740939
    [Abstract] [Full Text] [Related]

  • 14. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells.
    Pei M, He F, Li J, Tidwell JE, Jones AC, McDonough EB.
    Tissue Eng Part A; 2013 May 05; 19(9-10):1144-54. PubMed ID: 23216161
    [Abstract] [Full Text] [Related]

  • 15. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold.
    Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, Kim HJ, Seong SC, Lee MC.
    Biomaterials; 2004 Aug 05; 25(18):4163-73. PubMed ID: 15046906
    [Abstract] [Full Text] [Related]

  • 16. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites.
    Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA, Mikos AG.
    J Biomed Mater Res A; 2009 Mar 15; 88(4):889-97. PubMed ID: 18381637
    [Abstract] [Full Text] [Related]

  • 17. TGF-β1 presenting enzymatically cross-linked injectable hydrogels for improved chondrogenesis.
    Arora A, Mahajan A, Katti DS.
    Colloids Surf B Biointerfaces; 2017 Nov 01; 159():838-848. PubMed ID: 28888201
    [Abstract] [Full Text] [Related]

  • 18. Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture.
    Fan H, Zhang C, Li J, Bi L, Qin L, Wu H, Hu Y.
    Biomacromolecules; 2008 Mar 01; 9(3):927-34. PubMed ID: 18269244
    [Abstract] [Full Text] [Related]

  • 19. Effects of a chitosan scaffold containing TGF-beta1 encapsulated chitosan microspheres on in vitro chondrocyte culture.
    Lee JE, Kim SE, Kwon IC, Ahn HJ, Cho H, Lee SH, Kim HJ, Seong SC, Lee MC.
    Artif Organs; 2004 Sep 01; 28(9):829-39. PubMed ID: 15320946
    [Abstract] [Full Text] [Related]

  • 20. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.
    Pei M, Chen D, Li J, Wei L.
    Differentiation; 2009 Dec 01; 78(5):260-8. PubMed ID: 19716643
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.