These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


92 related items for PubMed ID: 2199604

  • 1. Misregulation of maltose uptake in a glucose repression defective mutant of Saccharomyces cerevisiae leads to glucose poisoning.
    Entian KD, Loureiro-Dias MC.
    J Gen Microbiol; 1990 May; 136(5):855-60. PubMed ID: 2199604
    [Abstract] [Full Text] [Related]

  • 2. A defect in carbon catabolite repression associated with uncontrollable and excessive maltose uptake.
    Entian KD.
    Mol Gen Genet; 1980 May; 179(1):169-75. PubMed ID: 7005623
    [Abstract] [Full Text] [Related]

  • 3. Isolation and characterization of the regulatory HEX2 gene necessary for glucose repression in yeast.
    Niederacher D, Entian KD.
    Mol Gen Genet; 1987 Mar; 206(3):505-9. PubMed ID: 3035346
    [Abstract] [Full Text] [Related]

  • 4. Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2.
    Dumortier F, Argüelles JC, Thevelein JM.
    Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1559-66. PubMed ID: 7551024
    [Abstract] [Full Text] [Related]

  • 5. Parallel changes in catabolite repression of haem biosynthesis and cytochromes in repression-resistant mutants of Saccharomyces cerevisiae.
    Borralho LM, Malamud DR, Panek AD, Tenan MN, Oliveira DE, Mattoon JR.
    J Gen Microbiol; 1989 May; 135(5):1217-27. PubMed ID: 2695599
    [Abstract] [Full Text] [Related]

  • 6. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae.
    Entian KD, Zimmermann FK.
    J Bacteriol; 1982 Sep; 151(3):1123-8. PubMed ID: 7050076
    [Abstract] [Full Text] [Related]

  • 7. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast.
    Niederacher D, Entian KD.
    Eur J Biochem; 1991 Sep 01; 200(2):311-9. PubMed ID: 1889400
    [Abstract] [Full Text] [Related]

  • 8. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA, Cortassa S.
    Biotechnol Bioeng; 1998 Jul 20; 59(2):203-13. PubMed ID: 10099331
    [Abstract] [Full Text] [Related]

  • 9. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis.
    Entian KD.
    Mol Gen Genet; 1981 Jul 20; 184(2):278-82. PubMed ID: 7035837
    [Abstract] [Full Text] [Related]

  • 10. Substrate-accelerated death of Saccharomyces cerevisiae CBS 8066 under maltose stress.
    Postma E, Verduyn C, Kuiper A, Scheffers WA, van Dijken JP.
    Yeast; 1990 Jul 20; 6(2):149-58. PubMed ID: 2183522
    [Abstract] [Full Text] [Related]

  • 11. Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose.
    Hatanaka H, Mitsunaga H, Fukusaki E.
    J Biosci Bioeng; 2018 Jan 20; 125(1):52-58. PubMed ID: 28919251
    [Abstract] [Full Text] [Related]

  • 12. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes.
    Schüller HJ, Entian KD.
    J Bacteriol; 1991 Mar 20; 173(6):2045-52. PubMed ID: 2002006
    [Abstract] [Full Text] [Related]

  • 13. Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae.
    Klein CJ, Olsson L, Rønnow B, Mikkelsen JD, Nielsen J.
    Appl Environ Microbiol; 1996 Dec 20; 62(12):4441-9. PubMed ID: 8953715
    [Abstract] [Full Text] [Related]

  • 14. Reversible loss of affinity induced by glucose in the maltose-H+ symport of Saccharomyces cerevisiae.
    Peinado JM, Loureiro-Dias MC.
    Biochim Biophys Acta; 1986 Apr 14; 856(2):189-92. PubMed ID: 3513836
    [Abstract] [Full Text] [Related]

  • 15. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene.
    Raamsdonk LM, Diderich JA, Kuiper A, van Gaalen M, Kruckeberg AL, Berden JA, Van Dam K.
    Yeast; 2001 Aug 14; 18(11):1023-33. PubMed ID: 11481673
    [Abstract] [Full Text] [Related]

  • 16. Effect of hxk2 deletion and HAP4 overexpression on fermentative capacity in Saccharomyces cerevisiae.
    Schuurmans JM, Rossell SL, van Tuijl A, Bakker BM, Hellingwerf KJ, Teixeira de Mattos MJ.
    FEMS Yeast Res; 2008 Mar 14; 8(2):195-203. PubMed ID: 18179578
    [Abstract] [Full Text] [Related]

  • 17. Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect.
    Weusthuis RA, Visser W, Pronk JT, Scheffers WA, van Dijken JP.
    Microbiology (Reading); 1994 Apr 14; 140 ( Pt 4)():703-15. PubMed ID: 8012592
    [Abstract] [Full Text] [Related]

  • 18. Isolation and characterization of maltose non utilizing (mnu) mutants mapping outside the MAL1 locus in Saccharomyces cerevisiae.
    Vanoni M, Goldenthal MJ.
    FEMS Microbiol Lett; 1991 Jan 15; 61(2-3):233-6. PubMed ID: 2037232
    [Abstract] [Full Text] [Related]

  • 19. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1.
    Ernandes JR, De Meirsman C, Rolland F, Winderickx J, de Winde J, Brandão RL, Thevelein JM.
    Yeast; 1998 Feb 15; 14(3):255-69. PubMed ID: 9580251
    [Abstract] [Full Text] [Related]

  • 20. The influence of ammonium permease activity and carbon source on the uptake of ammonium from simple defined media by Saccharomyces cerevisiae.
    Egbosimba EE, Slaughter JC.
    J Gen Microbiol; 1987 Feb 15; 133(2):375-9. PubMed ID: 3309154
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.