These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


543 related items for PubMed ID: 21997016

  • 21. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J, Kvasnička P, Idso M, Jordan RW, Gong H, Homola J, Yu Q.
    Opt Express; 2011 Oct 10; 19(21):20493-505. PubMed ID: 21997057
    [Abstract] [Full Text] [Related]

  • 22. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH, Li D, Simon GP, Garnier G.
    Langmuir; 2012 Jun 12; 28(23):8782-90. PubMed ID: 22594710
    [Abstract] [Full Text] [Related]

  • 23. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering.
    Lin CH, Jiang L, Chai YH, Xiao H, Chen SJ, Tsai HL.
    Opt Express; 2009 Nov 23; 17(24):21581-9. PubMed ID: 19997399
    [Abstract] [Full Text] [Related]

  • 24. Small-signal analysis of bidirectional operating characteristics in a Raman ring laser with external optical injections.
    Luo Z, Yuan X, Ye W, Zeng C, Ji J.
    Opt Express; 2010 Aug 30; 18(18):19407-12. PubMed ID: 20940836
    [Abstract] [Full Text] [Related]

  • 25. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy.
    Zhang X, Zheng Y, Liu X, Lu W, Dai J, Lei DY, MacFarlane DR.
    Adv Mater; 2015 Feb 11; 27(6):1090-6. PubMed ID: 25534763
    [Abstract] [Full Text] [Related]

  • 26. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z, Li XY, Liu FJ, Jin PY, Chu X, Yu RQ.
    Biosens Bioelectron; 2013 May 15; 43():308-14. PubMed ID: 23353007
    [Abstract] [Full Text] [Related]

  • 27. Study of coupling efficiency of molecules to surface plasmon polaritons in surface-enhanced Raman scattering (SERS).
    Chan CY, Cao ZL, Ong HC.
    Opt Express; 2013 Jun 17; 21(12):14674-82. PubMed ID: 23787656
    [Abstract] [Full Text] [Related]

  • 28. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L, Lee TH, Elliott SR.
    Opt Lett; 2009 Sep 01; 34(17):2685-7. PubMed ID: 19724532
    [Abstract] [Full Text] [Related]

  • 29. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N.
    Nanotechnology; 2012 Mar 23; 23(11):115501. PubMed ID: 22383452
    [Abstract] [Full Text] [Related]

  • 30. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D, Petschulat J, Hübner U, Schneidewind H, Zeisberger M, Mattheis R, Pertsch T, Schmitt M, Möller R, Popp J.
    Chemphyschem; 2010 Jun 21; 11(9):1918-24. PubMed ID: 20401896
    [Abstract] [Full Text] [Related]

  • 31. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T, Yoshikawa H, Yoshida K, Biju V, Ishikawa M.
    J Chem Phys; 2009 Jun 07; 130(21):214706. PubMed ID: 19508086
    [Abstract] [Full Text] [Related]

  • 32. Raman enhancement on a broadband meta-surface.
    Ayas S, Güner H, Türker B, Ekiz OÖ, Dirisaglik F, Okyay AK, Dâna A.
    ACS Nano; 2012 Aug 28; 6(8):6852-61. PubMed ID: 22845672
    [Abstract] [Full Text] [Related]

  • 33. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.
    Amendola V, Scaramuzza S, Agnoli S, Polizzi S, Meneghetti M.
    Nanoscale; 2014 Aug 28; 6(3):1423-33. PubMed ID: 24309909
    [Abstract] [Full Text] [Related]

  • 34. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL, Sharma B, Blaber MG, Henry AI, Valley N, Freeman RG, Natan MJ, Schatz GC, Van Duyne RP.
    J Am Chem Soc; 2013 Jan 09; 135(1):301-8. PubMed ID: 23214430
    [Abstract] [Full Text] [Related]

  • 35. Reproducible SERRS from structured gold surfaces.
    Mahajan S, Baumberg JJ, Russell AE, Bartlett PN.
    Phys Chem Chem Phys; 2007 Dec 07; 9(45):6016-20. PubMed ID: 18004415
    [Abstract] [Full Text] [Related]

  • 36. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF, Mu C, Xu DS, Tong LM, Zhu T, Du WM.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct 07; 28(10):2329-32. PubMed ID: 19123400
    [Abstract] [Full Text] [Related]

  • 37. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD, Glembocki O, Bezares FJ, Bassim ND, Rendell RW, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C.
    ACS Nano; 2011 May 24; 5(5):4046-55. PubMed ID: 21480637
    [Abstract] [Full Text] [Related]

  • 38. Silver-coated zeolite crystal films as surface-enhanced Raman scattering substrates.
    Yan W, Bao L, Mahurin SM, Dai S.
    Appl Spectrosc; 2004 Jan 24; 58(1):18-25. PubMed ID: 14727716
    [Abstract] [Full Text] [Related]

  • 39. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y, Liao J, Wang D, Li G.
    Anal Chem; 2014 Apr 15; 86(8):3955-63. PubMed ID: 24646316
    [Abstract] [Full Text] [Related]

  • 40. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H, Wang JH, Jin W, Li P, Chen M, Xie HH, Yu XF, Wang H, Dai Z, Xiao X, Chu PK.
    Small; 2014 Oct 15; 10(19):4012-9. PubMed ID: 24947686
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 28.