These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 2200275
1. Hepatic nerves are not essential to the increase in hepatic glucose production during muscular work. Wasserman DH, Williams PE, Lacy DB, Bracy D, Cherrington AD. Am J Physiol; 1990 Aug; 259(2 Pt 1):E195-203. PubMed ID: 2200275 [Abstract] [Full Text] [Related]
2. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Wasserman DH, Spalding JA, Lacy DB, Colburn CA, Goldstein RE, Cherrington AD. Am J Physiol; 1989 Jul; 257(1 Pt 1):E108-17. PubMed ID: 2665514 [Abstract] [Full Text] [Related]
3. Regulation of gluconeogenesis during rest and exercise in the depancreatized dog. Wasserman DH, Johnson JL, Bupp JL, Lacy DB, Bracy DP. Am J Physiol; 1993 Jul; 265(1 Pt 1):E51-60. PubMed ID: 8338154 [Abstract] [Full Text] [Related]
4. Exercise-induced fall in insulin and hepatic carbohydrate metabolism during muscular work. Wasserman DH, Williams PE, Lacy DB, Goldstein RE, Cherrington AD. Am J Physiol; 1989 Apr; 256(4 Pt 1):E500-9. PubMed ID: 2650562 [Abstract] [Full Text] [Related]
5. Efficiency of compensation for absence of fall in insulin during exercise. Wasserman DH, Lacy DB, Colburn CA, Bracy D, Cherrington AD. Am J Physiol; 1991 Nov; 261(5 Pt 1):E587-97. PubMed ID: 1951683 [Abstract] [Full Text] [Related]
6. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery. Wasserman DH, Williams PE, Lacy DB, Green DR, Cherrington AD. Am J Physiol; 1988 Apr; 254(4 Pt 1):E518-25. PubMed ID: 3281473 [Abstract] [Full Text] [Related]
7. Hepatic alpha- and beta-adrenergic receptors are not essential for the increase in R(a) during exercise in diabetes. Coker RH, Lacy DB, Williams PE, Wasserman DH. Am J Physiol Endocrinol Metab; 2000 Mar; 278(3):E444-51. PubMed ID: 10710498 [Abstract] [Full Text] [Related]
8. Pancreatic innervation is not essential for exercise-induced changes in glucagon and insulin or glucose kinetics. Coker RH, Koyama Y, Lacy DB, Williams PE, Rhèaume N, Wasserman DH. Am J Physiol; 1999 Dec; 277(6):E1122-9. PubMed ID: 10600803 [Abstract] [Full Text] [Related]
9. The effect of acute glucagon removal on the metabolic response to stress hormone infusion in the conscious dog. McGuinness OP, Murrell S, Moran C, Bracy D, Cherrington AD. Metabolism; 1994 Oct; 43(10):1310-7. PubMed ID: 7934986 [Abstract] [Full Text] [Related]
10. Suppression of endogenous glucose production by mild hyperinsulinemia during exercise is determined predominantly by portal venous insulin. Camacho RC, Pencek RR, Lacy DB, James FD, Wasserman DH. Diabetes; 2004 Feb; 53(2):285-93. PubMed ID: 14747277 [Abstract] [Full Text] [Related]
11. Role of hepatic alpha- and beta-adrenergic receptor stimulation on hepatic glucose production during heavy exercise. Coker RH, Krishna MG, Lacy DB, Bracy DP, Wasserman DH. Am J Physiol; 1997 Nov; 273(5):E831-8. PubMed ID: 9374667 [Abstract] [Full Text] [Related]
12. Regulation of glucose turnover during exercise in pancreatectomized, totally insulin-deficient dogs. Effects of beta-adrenergic blockade. Bjorkman O, Miles P, Wasserman D, Lickley L, Vranic M. J Clin Invest; 1988 Jun; 81(6):1759-67. PubMed ID: 3290252 [Abstract] [Full Text] [Related]
13. Effect of hyperglucagonemia on hepatic glycogenolysis and gluconeogenesis after a prolonged fast. Hendrick GK, Frizzell RT, Williams PE, Cherrington AD. Am J Physiol; 1990 May; 258(5 Pt 1):E841-9. PubMed ID: 2185665 [Abstract] [Full Text] [Related]
14. Effect of epinephrine on glycogenolysis and gluconeogenesis in conscious overnight-fasted dogs. Cherrington AD, Fuchs H, Stevenson RW, Williams PE, Alberti KG, Steiner KE. Am J Physiol; 1984 Aug; 247(2 Pt 1):E137-44. PubMed ID: 6380303 [Abstract] [Full Text] [Related]
15. Dose-related effects of epinephrine on glucose production in conscious dogs. Stevenson RW, Steiner KE, Connolly CC, Fuchs H, Alberti KG, Williams PE, Cherrington AD. Am J Physiol; 1991 Mar; 260(3 Pt 1):E363-70. PubMed ID: 2003590 [Abstract] [Full Text] [Related]
16. Role of carotid bodies in control of the neuroendocrine response to exercise. Koyama Y, Coker RH, Denny JC, Lacy DB, Jabbour K, Williams PE, Wasserman DH. Am J Physiol Endocrinol Metab; 2001 Oct; 281(4):E742-8. PubMed ID: 11551850 [Abstract] [Full Text] [Related]
17. Sensitivity of exercise-induced increase in hepatic glucose production to glucose supply and demand. Berger CM, Sharis PJ, Bracy DP, Lacy DB, Wasserman DH. Am J Physiol; 1994 Sep; 267(3 Pt 1):E411-21. PubMed ID: 7943221 [Abstract] [Full Text] [Related]
18. Regulation of glucose metabolism by norepinephrine in conscious dogs. Connolly CC, Steiner KE, Stevenson RW, Neal DW, Williams PE, Alberti KG, Cherrington AD. Am J Physiol; 1991 Dec; 261(6 Pt 1):E764-72. PubMed ID: 1767837 [Abstract] [Full Text] [Related]
19. Role of liver nerves and adrenal medulla in glucose turnover of running rats. Sonne B, Mikines KJ, Richter EA, Christensen NJ, Galbo H. J Appl Physiol (1985); 1985 Nov; 59(5):1640-6. PubMed ID: 3905756 [Abstract] [Full Text] [Related]
20. Direct effects of catecholamines on hepatic glucose production in conscious dog are due to glycogenolysis. Chu CA, Sindelar DK, Neal DW, Cherrington AD. Am J Physiol; 1996 Jul; 271(1 Pt 1):E127-37. PubMed ID: 8760090 [Abstract] [Full Text] [Related] Page: [Next] [New Search]