These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


278 related items for PubMed ID: 22004899

  • 21. Tumor necrosis factor receptor 2 signaling limits β-adrenergic receptor-mediated cardiac hypertrophy in vivo.
    Garlie JB, Hamid T, Gu Y, Ismahil MA, Chandrasekar B, Prabhu SD.
    Basic Res Cardiol; 2011 Nov; 106(6):1193-205. PubMed ID: 21691899
    [Abstract] [Full Text] [Related]

  • 22. CIKS (Act1 or TRAF3IP2) mediates Angiotensin-II-induced Interleukin-18 expression, and Nox2-dependent cardiomyocyte hypertrophy.
    Valente AJ, Clark RA, Siddesha JM, Siebenlist U, Chandrasekar B.
    J Mol Cell Cardiol; 2012 Jul; 53(1):113-24. PubMed ID: 22575763
    [Abstract] [Full Text] [Related]

  • 23. Molecular basis of Period 1 regulation by adrenergic signaling in the heart.
    Jesus ICG, Araújo FM, Mesquita T, Júnior NNS, Silva MM, Morgan HJN, Silva KSC, Silva CLA, Birbrair A, Amaral FA, Navegantes LC, Salgado HC, Szawka RE, Poletini MO, Guatimosim S.
    FASEB J; 2021 Oct; 35(10):e21886. PubMed ID: 34473369
    [Abstract] [Full Text] [Related]

  • 24. Connective tissue growth factor/CCN2 attenuates β-adrenergic receptor responsiveness and cardiotoxicity by induction of G protein-coupled receptor kinase-5 in cardiomyocytes.
    Gravning J, Ahmed MS, Qvigstad E, Krobert K, Edvardsen T, Moe IT, Hagelin EM, Sagave J, Valen G, Levy FO, Osnes JB, Skomedal T, Attramadal H.
    Mol Pharmacol; 2013 Sep; 84(3):372-83. PubMed ID: 23778361
    [Abstract] [Full Text] [Related]

  • 25. Kruppel-like factor 4 protein regulates isoproterenol-induced cardiac hypertrophy by modulating myocardin expression and activity.
    Yoshida T, Yamashita M, Horimai C, Hayashi M.
    J Biol Chem; 2014 Sep 19; 289(38):26107-26118. PubMed ID: 25100730
    [Abstract] [Full Text] [Related]

  • 26. Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-κB.
    Verma SK, Krishnamurthy P, Barefield D, Singh N, Gupta R, Lambers E, Thal M, Mackie A, Hoxha E, Ramirez V, Qin G, Sadayappan S, Ghosh AK, Kishore R.
    Circulation; 2012 Jul 24; 126(4):418-29. PubMed ID: 22705886
    [Abstract] [Full Text] [Related]

  • 27. Protective effect of histone methyltransferase NSD3 on ISO-induced cardiac hypertrophy.
    Chen K, Jian D, Zhao L, Zang X, Song W, Ma J, Jia Z, Wang X, Gao C.
    FEBS Lett; 2019 Sep 24; 593(18):2556-2565. PubMed ID: 31254363
    [Abstract] [Full Text] [Related]

  • 28. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms.
    Kolmus K, Van Troys M, Van Wesemael K, Ampe C, Haegeman G, Tavernier J, Gerlo S.
    PLoS One; 2014 Sep 24; 9(6):e90649. PubMed ID: 24603712
    [Abstract] [Full Text] [Related]

  • 29. Cooperation of NFkappaB and CREB to induce synergistic IL-6 expression in astrocytes.
    Spooren A, Kooijman R, Lintermans B, Van Craenenbroeck K, Vermeulen L, Haegeman G, Gerlo S.
    Cell Signal; 2010 May 24; 22(5):871-81. PubMed ID: 20100571
    [Abstract] [Full Text] [Related]

  • 30. Endothelin-1- and isoproterenol-induced differential protein expression and signaling pathway in HL-1 cardiomyocytes.
    Hong HM, Song EJ, Oh E, Kabir MH, Lee C, Yoo YS.
    Proteomics; 2011 Jan 24; 11(2):283-97. PubMed ID: 21204255
    [Abstract] [Full Text] [Related]

  • 31. Protective Action of Diazoxide on Isoproterenol-Induced Hypertrophy Is Mediated by Reduction in MicroRNA-132 Expression.
    Narasimhan G, Carrillo ED, Hernández A, García MC, Sánchez JA.
    J Cardiovasc Pharmacol; 2018 Nov 24; 72(5):222-230. PubMed ID: 30403388
    [Abstract] [Full Text] [Related]

  • 32. Heterodimerization With 5-HT2BR Is Indispensable for β2AR-Mediated Cardioprotection.
    Song Y, Xu C, Liu J, Li Y, Wang H, Shan D, Wainer IW, Hu X, Zhang Y, Woo AY, Xiao RP.
    Circ Res; 2021 Jan 22; 128(2):262-277. PubMed ID: 33208036
    [Abstract] [Full Text] [Related]

  • 33. Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy.
    Laurent AC, Bisserier M, Lucas A, Tortosa F, Roumieux M, De Régibus A, Swiader A, Sainte-Marie Y, Heymes C, Vindis C, Lezoualc'h F.
    Cardiovasc Res; 2015 Jan 01; 105(1):55-64. PubMed ID: 25411381
    [Abstract] [Full Text] [Related]

  • 34. Cardiomyocyte Proteome Remodeling due to Isoproterenol-Induced Cardiac Hypertrophy during the Compensated Phase.
    Parreira RC, Gómez-Mendoza DP, de Jesus ICG, Lemos RP, Santos AK, Rezende CP, Figueiredo HCP, Pinto MCX, Kjeldsen F, Guatimosim S, Resende RR, Verano-Braga T.
    Proteomics Clin Appl; 2020 Jul 01; 14(4):e2000017. PubMed ID: 32506788
    [Abstract] [Full Text] [Related]

  • 35. Role of type 2A phosphatase regulatory subunit B56α in regulating cardiac responses to β-adrenergic stimulation in vivo.
    Puhl SL, Weeks KL, Güran A, Ranieri A, Boknik P, Kirchhefer U, Müller FU, Avkiran M.
    Cardiovasc Res; 2019 Mar 01; 115(3):519-529. PubMed ID: 30203051
    [Abstract] [Full Text] [Related]

  • 36. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism.
    Bageghni SA, Hemmings KE, Zava N, Denton CP, Porter KE, Ainscough JFX, Drinkhill MJ, Turner NA.
    FASEB J; 2018 Sep 01; 32(9):4941-4954. PubMed ID: 29601781
    [Abstract] [Full Text] [Related]

  • 37. {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways.
    Wang W, Zhang H, Gao H, Kubo H, Berretta RM, Chen X, Houser SR.
    Am J Physiol Heart Circ Physiol; 2010 Aug 01; 299(2):H322-31. PubMed ID: 20495143
    [Abstract] [Full Text] [Related]

  • 38. Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation.
    Yan G, Zhu N, Huang S, Yi B, Shang X, Chen M, Wang N, Zhang GX, Talarico JA, Tilley DG, Gao E, Sun J.
    Mol Cell Biol; 2015 Oct 01; 35(19):3312-23. PubMed ID: 26195821
    [Abstract] [Full Text] [Related]

  • 39. NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression.
    Wang T, Zhai M, Xu S, Ponnusamy M, Huang Y, Liu CY, Wang M, Shan C, Shan PP, Gao XQ, Wang K, Chen XZ, Liu J, Xie JY, Zhang DY, Zhou LY, Wang K.
    Theranostics; 2020 Oct 01; 10(2):553-566. PubMed ID: 31903137
    [Abstract] [Full Text] [Related]

  • 40. miR-145 inhibits isoproterenol-induced cardiomyocyte hypertrophy by targeting the expression and localization of GATA6.
    Li R, Yan G, Zhang Q, Jiang Y, Sun H, Hu Y, Sun J, Xu B.
    FEBS Lett; 2013 Jun 19; 587(12):1754-61. PubMed ID: 23624080
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.