These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
480 related items for PubMed ID: 22006266
1. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. He Z, Guai G, Liu J, Guo C, Loo JS, Li CM, Tan TT. Nanoscale; 2011 Nov; 3(11):4613-6. PubMed ID: 22006266 [Abstract] [Full Text] [Related]
2. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application. Tang YB, Lee CS, Xu J, Liu ZT, Chen ZH, He Z, Cao YL, Yuan G, Song H, Chen L, Luo L, Cheng HM, Zhang WJ, Bello I, Lee ST. ACS Nano; 2010 Jun 22; 4(6):3482-8. PubMed ID: 20455548 [Abstract] [Full Text] [Related]
3. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Yip CT, Guo M, Huang H, Zhou L, Wang Y, Huang C. Nanoscale; 2012 Jan 21; 4(2):448-50. PubMed ID: 22159643 [Abstract] [Full Text] [Related]
4. TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells. Nair AS, Zhu P, Babu VJ, Yang S, Krishnamoorthy T, Murugan R, Peng S, Ramakrishna S. Langmuir; 2012 Apr 17; 28(15):6202-6. PubMed ID: 22469013 [Abstract] [Full Text] [Related]
5. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode. Jang YH, Xin X, Byun M, Jang YJ, Lin Z, Kim DH. Nano Lett; 2012 Jan 11; 12(1):479-85. PubMed ID: 22148913 [Abstract] [Full Text] [Related]
6. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Grätzel M. ACS Nano; 2008 Jun 11; 2(6):1113-6. PubMed ID: 19206327 [Abstract] [Full Text] [Related]
7. Hierarchical TiO2 microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells. Wu D, Wang Y, Dong H, Zhu F, Gao S, Jiang K, Fu L, Zhang J, Xu D. Nanoscale; 2013 Jan 07; 5(1):324-30. PubMed ID: 23165289 [Abstract] [Full Text] [Related]
8. Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. Veerappan G, Bojan K, Rhee SW. ACS Appl Mater Interfaces; 2011 Mar 07; 3(3):857-62. PubMed ID: 21351744 [Abstract] [Full Text] [Related]
9. Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells. Kim HN, Moon JH. ACS Appl Mater Interfaces; 2012 Nov 07; 4(11):5821-5. PubMed ID: 23153118 [Abstract] [Full Text] [Related]
10. Understanding TiO(2) size-dependent electron transport properties of a graphene-TiO(2) photoanode in dye-sensitized solar cells using conducting atomic force microscopy. He Z, Phan H, Liu J, Nguyen TQ, Tan TT. Adv Mater; 2013 Dec 17; 25(47):6900-4. PubMed ID: 24114931 [Abstract] [Full Text] [Related]
11. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Wang H, Bai Y, Wu Q, Zhou W, Zhang H, Li J, Guo L. Phys Chem Chem Phys; 2011 Apr 21; 13(15):7008-13. PubMed ID: 21399795 [Abstract] [Full Text] [Related]
12. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition. Wang HW, Ting CF, Hung MK, Chiou CH, Liu YL, Liu Z, Ratinac KR, Ringer SP. Nanotechnology; 2009 Feb 04; 20(5):055601. PubMed ID: 19417348 [Abstract] [Full Text] [Related]
13. One-dimensional and (001) facetted nanostructured TiO2 photoanodes for dye-sensitized solar cells. Lin H, Wang X, Hao F. Chimia (Aarau); 2013 Feb 04; 67(3):136-41. PubMed ID: 23574952 [Abstract] [Full Text] [Related]
14. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers. Ghadiri E, Taghavinia N, Zakeeruddin SM, Grätzel M, Moser JE. Nano Lett; 2010 May 12; 10(5):1632-8. PubMed ID: 20423062 [Abstract] [Full Text] [Related]
15. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Shao W, Gu F, Li C, Lu M. Inorg Chem; 2010 Jun 21; 49(12):5453-9. PubMed ID: 20507078 [Abstract] [Full Text] [Related]
16. Growing TiO2 nanowires on the surface of graphene sheets in supercritical CO2: characterization and photoefficiency. Farhangi N, Medina-Gonzalez Y, Chowdhury RR, Charpentier PA. Nanotechnology; 2012 Jul 27; 23(29):294005. PubMed ID: 22743625 [Abstract] [Full Text] [Related]
17. Effect of an ultrathin TiO(2) layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Park K, Zhang Q, Garcia BB, Zhou X, Jeong YH, Cao G. Adv Mater; 2010 Jun 04; 22(21):2329-32. PubMed ID: 20376847 [No Abstract] [Full Text] [Related]
18. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite. Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y. Nanoscale; 2012 Jan 21; 4(2):441-3. PubMed ID: 22159842 [Abstract] [Full Text] [Related]
19. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells. Zhu G, Pan L, Xu T, Zhao Q, Lu B, Sun Z. Nanoscale; 2011 May 21; 3(5):2188-93. PubMed ID: 21451826 [Abstract] [Full Text] [Related]
20. Effect of the preparation procedure on the morphology of thin TiO₂ films and their device performance in small-molecule bilayer hybrid solar cells. Unger EL, Spadavecchia F, Nonomura K, Palmgren P, Cappelletti G, Hagfeldt A, Johansson EM, Boschloo G. ACS Appl Mater Interfaces; 2012 Nov 21; 4(11):5997-6004. PubMed ID: 23066994 [Abstract] [Full Text] [Related] Page: [Next] [New Search]