These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
315 related items for PubMed ID: 22006846
1. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells. Hou H, Di Vona ML, Knauth P. ChemSusChem; 2011 Nov 18; 4(11):1526-36. PubMed ID: 22006846 [Abstract] [Full Text] [Related]
2. Promising TiOSO₄ composite polybenzimidazole-based membranes for high temperature PEMFCs. Lobato J, Cañizares P, Rodrigo MA, Ubeda D, Pinar FJ. ChemSusChem; 2011 Oct 17; 4(10):1489-97. PubMed ID: 21916013 [Abstract] [Full Text] [Related]
3. Advances in the high performance polymer electrolyte membranes for fuel cells. Zhang H, Shen PK. Chem Soc Rev; 2012 Mar 21; 41(6):2382-94. PubMed ID: 22222889 [Abstract] [Full Text] [Related]
4. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte. Li J, Li X, Zhao Y, Lu W, Shao Z, Yi B. ChemSusChem; 2012 May 21; 5(5):896-900. PubMed ID: 22529063 [Abstract] [Full Text] [Related]
5. Chitin nanowhisker-supported sulfonated poly(ether sulfone) proton exchange for fuel cell applications. Zhang C, Zhuang X, Li X, Wang W, Cheng B, Kang W, Cai Z, Li M. Carbohydr Polym; 2016 Apr 20; 140():195-201. PubMed ID: 26876844 [Abstract] [Full Text] [Related]
6. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Peckham TJ, Holdcroft S. Adv Mater; 2010 Nov 09; 22(42):4667-90. PubMed ID: 20848594 [Abstract] [Full Text] [Related]
7. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells. Dou M, Hou M, Zhang H, Li G, Lu W, Wei Z, Shao Z, Yi B. ChemSusChem; 2012 May 09; 5(5):945-51. PubMed ID: 22532479 [Abstract] [Full Text] [Related]
8. Fully aromatic block copolymers for fuel cell membranes with densely sulfonated nanophase domains. Takamuku S, Jannasch P. Macromol Rapid Commun; 2011 Mar 02; 32(5):474-80. PubMed ID: 21433202 [Abstract] [Full Text] [Related]
9. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy. Feindel KW, Bergens SH, Wasylishen RE. Phys Chem Chem Phys; 2007 Apr 21; 9(15):1850-7. PubMed ID: 17415498 [Abstract] [Full Text] [Related]
10. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells. Xu F, Mu S. J Nanosci Nanotechnol; 2014 Feb 21; 14(2):1169-80. PubMed ID: 24749420 [Abstract] [Full Text] [Related]
11. Characterization of sulfonated poly(ether ether ketone)/silane nanocomposite membrane for high temperature polymer electrolyte membrane fuel cells. Ghil LJ, Kim CK, Park NR, Rhee HW. J Nanosci Nanotechnol; 2011 Jan 21; 11(1):331-4. PubMed ID: 21446450 [Abstract] [Full Text] [Related]
12. Spectroscopic investigations into degradation of polymer membranes for fuel cells applications. Kruczała K, Szczubiałka K, Łańcucki Ł, Zastawny I, Góra-Marek K, Dyrek K, Sojka Z. Spectrochim Acta A Mol Biomol Spectrosc; 2008 May 21; 69(5):1337-43. PubMed ID: 18053760 [Abstract] [Full Text] [Related]
13. Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. Yasuda T, Nakamura S, Honda Y, Kinugawa K, Lee SY, Watanabe M. ACS Appl Mater Interfaces; 2012 Mar 21; 4(3):1783-90. PubMed ID: 22352958 [Abstract] [Full Text] [Related]
14. Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane. Hara N, Ohashi H, Ito T, Yamaguchi T. J Phys Chem B; 2009 Apr 09; 113(14):4656-63. PubMed ID: 19290602 [Abstract] [Full Text] [Related]
15. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells. Cui X, Shi J, Wang Y, Chen Y, Zhang L, Hua Z. ChemSusChem; 2014 Jan 09; 7(1):135-45. PubMed ID: 24382829 [Abstract] [Full Text] [Related]
16. Protocol for synthesis and characterization of ePTFE reinforced, sulfonated polyphenylene in the application to proton exchange membrane fuel cells. Long Z, Miyatake K. STAR Protoc; 2022 Mar 18; 3(1):101049. PubMed ID: 34977688 [Abstract] [Full Text] [Related]
17. Segmented tetrasulfonated copoly(arylene ether sulfone)s: improving proton transport properties by extending the ionic sequence. Takamuku S, Weiber EA, Jannasch P. ChemSusChem; 2013 Feb 18; 6(2):308-19. PubMed ID: 23307760 [Abstract] [Full Text] [Related]
18. Role of sulfonation in the stability, reactivity, and selectivity of poly(ether imide) used to develop ion exchange membranes: DFT study with application to fuel cells. López-Chávez E, Peña-Castañeda YA, de la Portilla-Maldonado LC, Guzmán-Pantoja J, Martínez-Magadán JM, Oviedo-Roa R, de Landa Castillo-Alvarado F, Cruz-Torres A. J Mol Model; 2014 Jul 18; 20(7):2325. PubMed ID: 24958304 [Abstract] [Full Text] [Related]
19. Synthesis and characterization of sulfonated poly(ether sulfone)s containing mesonaphthobifluorene for polymer electrolyte membrane fuel cell. Lim Y, Seo D, Lee S, Hossain MA, Lim J, Lee S, Hong T, Kim W. J Nanosci Nanotechnol; 2014 Oct 18; 14(10):7948-53. PubMed ID: 25942900 [Abstract] [Full Text] [Related]
20. Anhydrous proton-conducting polymeric electrolytes for fuel cells. Narayanan SR, Yen SP, Liu L, Greenbaum SG. J Phys Chem B; 2006 Mar 09; 110(9):3942-8. PubMed ID: 16509680 [Abstract] [Full Text] [Related] Page: [Next] [New Search]