These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 22008704

  • 21. Apolipoprotein A5 and lipoprotein lipase interact to modulate anthropometric measures in Hispanics of Caribbean origin.
    Smith CE, Tucker KL, Lai CQ, Parnell LD, Lee YC, Ordovás JM.
    Obesity (Silver Spring); 2010 Feb; 18(2):327-32. PubMed ID: 19629056
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. In vivo characterization of human APOA5 haplotypes.
    Ahituv N, Akiyama J, Chapman-Helleboid A, Fruchart J, Pennacchio LA.
    Genomics; 2007 Dec; 90(6):674-9. PubMed ID: 17936576
    [Abstract] [Full Text] [Related]

  • 24. Ex vivo measurement of lipoprotein lipase-dependent very low density lipoprotein (VLDL)-triglyceride hydrolysis in human VLDL: an alternative to the postheparin assay of lipoprotein lipase activity?
    Pruneta V, Autran D, Ponsin G, Marcais C, Duvillard L, Verges B, Berthezene F, Moulin P.
    J Clin Endocrinol Metab; 2001 Feb; 86(2):797-803. PubMed ID: 11158049
    [Abstract] [Full Text] [Related]

  • 25. Hypertriglyceridaemia and low plasma HDL in a patient with apolipoprotein A-V deficiency due to a novel mutation in the APOA5 gene.
    Priore Oliva C, Carubbi F, Schaap FG, Bertolini S, Calandra S.
    J Intern Med; 2008 Apr; 263(4):450-8. PubMed ID: 18324930
    [Abstract] [Full Text] [Related]

  • 26. Impact of phosphatidylcholine liposomes on the compositional changes of VLDL during lipoprotein lipase (LPL)-mediated lipolysis.
    Ćwiklińska A, Gliwińska A, Senderowska Z, Kortas-Stempak B, Kuchta A, Dąbkowski K, Jankowski M.
    Chem Phys Lipids; 2016 Feb; 195():63-70. PubMed ID: 26756862
    [Abstract] [Full Text] [Related]

  • 27. Functional analyses of human apolipoprotein CII by site-directed mutagenesis: identification of residues important for activation of lipoprotein lipase.
    Shen Y, Lookene A, Nilsson S, Olivecrona G.
    J Biol Chem; 2002 Feb 08; 277(6):4334-42. PubMed ID: 11719505
    [Abstract] [Full Text] [Related]

  • 28. Modulation of phenotypic expression of APOA5 Q97X and L242P mutations.
    Charrière S, Cugnet C, Guitard M, Bernard S, Groisne L, Charcosset M, Pruneta-Deloche V, Merlin M, Billon S, Delay M, Sassolas A, Moulin P, Marçais C.
    Atherosclerosis; 2009 Nov 08; 207(1):150-6. PubMed ID: 19447388
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Apoprotein A-V: an important regulator of triglyceride metabolism.
    Kluger M, Heeren J, Merkel M.
    J Inherit Metab Dis; 2008 Apr 08; 31(2):281-8. PubMed ID: 18415697
    [Abstract] [Full Text] [Related]

  • 32. Magnolol-mediated regulation of plasma triglyceride through affecting lipoprotein lipase activity in apolipoprotein A5 knock-in mice.
    Chang CK, Lin XR, Lin YL, Fang WH, Lin SW, Chang SY, Kao JT.
    PLoS One; 2018 Apr 08; 13(2):e0192740. PubMed ID: 29425239
    [Abstract] [Full Text] [Related]

  • 33. Two novel rare variants of APOA5 gene found in subjects with severe hypertriglyceridemia.
    Pisciotta L, Fresa R, Bellocchio A, Guido V, Priore Oliva C, Calandra S, Bertolini S.
    Clin Chim Acta; 2011 Nov 20; 412(23-24):2194-8. PubMed ID: 21846464
    [Abstract] [Full Text] [Related]

  • 34. Efficient lowering of triglyceride levels in mice by human apoAV protein variants associated with hypertriglyceridemia.
    Vaessen SF, Sierts JA, Kuivenhoven JA, Schaap FG.
    Biochem Biophys Res Commun; 2009 Feb 06; 379(2):542-6. PubMed ID: 19121291
    [Abstract] [Full Text] [Related]

  • 35. Is apolipoprotein A5 a novel regulator of triglyceride-rich lipoproteins?
    Jakel H, Nowak M, Helleboid-Chapman A, Fruchart-Najib J, Fruchart JC.
    Ann Med; 2006 Feb 06; 38(1):2-10. PubMed ID: 16448983
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment.
    Marçais C, Verges B, Charrière S, Pruneta V, Merlin M, Billon S, Perrot L, Drai J, Sassolas A, Pennacchio LA, Fruchart-Najib J, Fruchart JC, Durlach V, Moulin P.
    J Clin Invest; 2005 Oct 06; 115(10):2862-9. PubMed ID: 16200213
    [Abstract] [Full Text] [Related]

  • 38. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia.
    Mendoza-Barberá E, Julve J, Nilsson SK, Lookene A, Martín-Campos JM, Roig R, Lechuga-Sancho AM, Sloan JH, Fuentes-Prior P, Blanco-Vaca F.
    J Lipid Res; 2013 Mar 06; 54(3):649-661. PubMed ID: 23307945
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. GPIHBP1 C89F neomutation and hydrophobic C-terminal domain G175R mutation in two pedigrees with severe hyperchylomicronemia.
    Charrière S, Peretti N, Bernard S, Di Filippo M, Sassolas A, Merlin M, Delay M, Debard C, Lefai E, Lachaux A, Moulin P, Marçais C.
    J Clin Endocrinol Metab; 2011 Oct 06; 96(10):E1675-9. PubMed ID: 21816778
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.