These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
528 related items for PubMed ID: 22015382
1. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Park HY, Jeon SH, Park CK. Ophthalmology; 2012 Jan; 119(1):10-20. PubMed ID: 22015382 [Abstract] [Full Text] [Related]
2. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, Yoshimura N. Ophthalmology; 2009 Feb; 116(2):214-22. PubMed ID: 19091413 [Abstract] [Full Text] [Related]
3. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Park HY, Park CK. Ophthalmology; 2013 Apr; 120(4):745-52. PubMed ID: 23260259 [Abstract] [Full Text] [Related]
4. Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect. Kwun Y, Han JC, Kee C. Am J Ophthalmol; 2015 Mar; 159(3):512-8.e1. PubMed ID: 25498357 [Abstract] [Full Text] [Related]
5. Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging. Kim S, Sung KR, Lee JR, Lee KS. Ophthalmology; 2013 Sep; 120(9):1798-803. PubMed ID: 23622874 [Abstract] [Full Text] [Related]
6. [Analysis of morphologic changes of lamina cribrosa in primary open angle glaucoma using enhanced depth imaging optical coherence tomography]. Li L, Bian AL, Cheng GW, Zhou Q. Zhonghua Yan Ke Za Zhi; 2016 Jun 11; 52(6):422-8. PubMed ID: 27373570 [Abstract] [Full Text] [Related]
7. Factors associated with focal lamina cribrosa defects in glaucoma. Park SC, Hsu AT, Su D, Simonson JL, Al-Jumayli M, Liu Y, Liebmann JM, Ritch R. Invest Ophthalmol Vis Sci; 2013 Dec 30; 54(13):8401-7. PubMed ID: 24255039 [Abstract] [Full Text] [Related]
8. Optic disc hemorrhage may be associated with retinal nerve fiber loss in otherwise normal eyes. Jeoung JW, Park KH, Kim JM, Kang SH, Kang JH, Kim TW, Kim DM. Ophthalmology; 2008 Dec 30; 115(12):2132-40. PubMed ID: 19041474 [Abstract] [Full Text] [Related]
9. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Boland MV, Zhang L, Broman AT, Jampel HD, Quigley HA. Ophthalmology; 2008 Feb 30; 115(2):239-245.e2. PubMed ID: 18082888 [Abstract] [Full Text] [Related]
10. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma. Li L, Bian A, Cheng G, Zhou Q. Acta Ophthalmol; 2016 Sep 30; 94(6):e492-500. PubMed ID: 27009574 [Abstract] [Full Text] [Related]
11. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Park HY, Shin HY, Park CK. Am J Ophthalmol; 2014 Mar 30; 157(3):550-7. PubMed ID: 24239773 [Abstract] [Full Text] [Related]
12. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R. Ophthalmology; 2012 Jan 30; 119(1):3-9. PubMed ID: 21978593 [Abstract] [Full Text] [Related]
13. Structure and clinical significance of central optic disc pits. Qayum S, Sullivan T, Park SC, Merchant K, Banik R, Liebmann JM, Ritch R. Ophthalmology; 2013 Jul 30; 120(7):1415-22. PubMed ID: 23531350 [Abstract] [Full Text] [Related]
14. Improved reproducibility in measuring the laminar thickness on enhanced depth imaging SD-OCT images using maximum intensity projection. Lee EJ, Kim TW, Weinreb RN. Invest Ophthalmol Vis Sci; 2012 Nov 09; 53(12):7576-82. PubMed ID: 23074212 [Abstract] [Full Text] [Related]
15. Potential of stratus optical coherence tomography for detecting early glaucoma in perimetrically normal eyes of open-angle glaucoma patients with unilateral visual field loss. Zhang Y, Wu LL, Yang YF. J Glaucoma; 2010 Jan 09; 19(1):61-5. PubMed ID: 20075675 [Abstract] [Full Text] [Related]
16. Comparison of macular ganglion cell complex thickness by Fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma. Kim NR, Hong S, Kim JH, Rho SS, Seong GJ, Kim CY. J Glaucoma; 2013 Feb 09; 22(2):133-9. PubMed ID: 21701394 [Abstract] [Full Text] [Related]
17. Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography. Nakano N, Hangai M, Nakanishi H, Mori S, Nukada M, Kotera Y, Ikeda HO, Nakamura H, Nonaka A, Yoshimura N. Ophthalmology; 2011 Dec 09; 118(12):2414-26. PubMed ID: 21924499 [Abstract] [Full Text] [Related]
18. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia. Lopilly Park HY, Lee NY, Choi JA, Park CK. Am J Ophthalmol; 2014 Apr 09; 157(4):876-84. PubMed ID: 24412142 [Abstract] [Full Text] [Related]
19. Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography. Sakamoto A, Hangai M, Nukada M, Nakanishi H, Mori S, Kotera Y, Inoue R, Yoshimura N. Invest Ophthalmol Vis Sci; 2010 Oct 09; 51(10):5062-70. PubMed ID: 20463326 [Abstract] [Full Text] [Related]
20. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits. You JY, Park SC, Su D, Teng CC, Liebmann JM, Ritch R. JAMA Ophthalmol; 2013 Mar 09; 131(3):314-20. PubMed ID: 23370812 [Abstract] [Full Text] [Related] Page: [Next] [New Search]