These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


480 related items for PubMed ID: 22017379

  • 1. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures.
    Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S.
    Anal Chem; 2011 Dec 01; 83(23):8953-8. PubMed ID: 22017379
    [Abstract] [Full Text] [Related]

  • 2. Paper-based SERS swab for rapid trace detection on real-world surfaces.
    Lee CH, Tian L, Singamaneni S.
    ACS Appl Mater Interfaces; 2010 Dec 01; 2(12):3429-35. PubMed ID: 21128660
    [Abstract] [Full Text] [Related]

  • 3. PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection.
    Shao J, Tong L, Tang S, Guo Z, Zhang H, Li P, Wang H, Du C, Yu XF.
    ACS Appl Mater Interfaces; 2015 Mar 11; 7(9):5391-9. PubMed ID: 25697378
    [Abstract] [Full Text] [Related]

  • 4. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML, Tsai BC, Yang J.
    Anal Chim Acta; 2011 Dec 05; 708(1-2):89-96. PubMed ID: 22093349
    [Abstract] [Full Text] [Related]

  • 5. Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced raman spectroscopy.
    Fan JG, Zhao YP.
    Langmuir; 2008 Dec 16; 24(24):14172-5. PubMed ID: 19053654
    [Abstract] [Full Text] [Related]

  • 6. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y, Liao J, Wang D, Li G.
    Anal Chem; 2014 Apr 15; 86(8):3955-63. PubMed ID: 24646316
    [Abstract] [Full Text] [Related]

  • 7. Tuning plasmons on nano-structured substrates for NIR-SERS.
    Mahajan S, Abdelsalam M, Suguwara Y, Cintra S, Russell A, Baumberg J, Bartlett P.
    Phys Chem Chem Phys; 2007 Jan 07; 9(1):104-9. PubMed ID: 17164891
    [Abstract] [Full Text] [Related]

  • 8. Multilayer enhanced gold film over nanostructure surface-enhanced Raman substrates.
    Li H, Baum CE, Sun J, Cullum BM.
    Appl Spectrosc; 2006 Dec 07; 60(12):1377-85. PubMed ID: 17217586
    [Abstract] [Full Text] [Related]

  • 9. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 10. Nanostructured surfaces and assemblies as SERS media.
    Ko H, Singamaneni S, Tsukruk VV.
    Small; 2008 Oct 07; 4(10):1576-99. PubMed ID: 18844309
    [Abstract] [Full Text] [Related]

  • 11. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S, Ahn M, Kim J.
    Anal Chim Acta; 2013 May 24; 779():1-7. PubMed ID: 23663665
    [Abstract] [Full Text] [Related]

  • 12. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering.
    Lin CH, Jiang L, Chai YH, Xiao H, Chen SJ, Tsai HL.
    Opt Express; 2009 Nov 23; 17(24):21581-9. PubMed ID: 19997399
    [Abstract] [Full Text] [Related]

  • 13. Large area flexible SERS active substrates using engineered nanostructures.
    Chung AJ, Huh YS, Erickson D.
    Nanoscale; 2011 Jul 23; 3(7):2903-8. PubMed ID: 21629884
    [Abstract] [Full Text] [Related]

  • 14. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y, Tanemura M, Huang Z, Jiang D, Li ZY, Huang YP, Kawamura G, Yamaguchi K, Nogami M.
    Nanotechnology; 2010 Aug 13; 21(32):325701. PubMed ID: 20639588
    [Abstract] [Full Text] [Related]

  • 15. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device.
    Li B, Zhang W, Chen L, Lin B.
    Electrophoresis; 2013 Aug 13; 34(15):2162-8. PubMed ID: 23712933
    [Abstract] [Full Text] [Related]

  • 16. Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening.
    Liu Q, Wang J, Wang B, Li Z, Huang H, Li C, Yu X, Chu PK.
    Biosens Bioelectron; 2014 Apr 15; 54():128-34. PubMed ID: 24269754
    [Abstract] [Full Text] [Related]

  • 17. Individual nanostructured materials: fabrication and surface-enhanced Raman scattering.
    Gong X, Bao Y, Qiu C, Jiang C.
    Chem Commun (Camb); 2012 Jul 18; 48(56):7003-18. PubMed ID: 22683862
    [Abstract] [Full Text] [Related]

  • 18. Additional amplifications of SERS via an optofluidic CD-based platform.
    Choi D, Kang T, Cho H, Choi Y, Lee LP.
    Lab Chip; 2009 Jan 21; 9(2):239-43. PubMed ID: 19107279
    [Abstract] [Full Text] [Related]

  • 19. Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing.
    Dinish US, Yaw FC, Agarwal A, Olivo M.
    Biosens Bioelectron; 2011 Jan 15; 26(5):1987-92. PubMed ID: 20869866
    [Abstract] [Full Text] [Related]

  • 20. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J, Kvasnička P, Idso M, Jordan RW, Gong H, Homola J, Yu Q.
    Opt Express; 2011 Oct 10; 19(21):20493-505. PubMed ID: 21997057
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.