These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 2201757

  • 1. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.
    Farnum CE, Turgai J, Wilsman NJ.
    J Orthop Res; 1990 Sep; 8(5):750-63. PubMed ID: 2201757
    [Abstract] [Full Text] [Related]

  • 2. Morphologic stages of the terminal hypertrophic chondrocyte of growth plate cartilage.
    Farnum CE, Wilsman NJ.
    Anat Rec; 1987 Nov; 219(3):221-32. PubMed ID: 3425941
    [Abstract] [Full Text] [Related]

  • 3. Condensation of hypertrophic chondrocytes at the chondro-osseous junction of growth plate cartilage in Yucatan swine: relationship to long bone growth.
    Farnum CE, Wilsman NJ.
    Am J Anat; 1989 Dec; 186(4):346-58. PubMed ID: 2589219
    [Abstract] [Full Text] [Related]

  • 4. End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes.
    Hatori M, Klatte KJ, Teixeira CC, Shapiro IM.
    J Bone Miner Res; 1995 Dec; 10(12):1960-8. PubMed ID: 8619377
    [Abstract] [Full Text] [Related]

  • 5. The osmotic sensitivity of rat growth plate chondrocytes in situ; clarifying the mechanisms of hypertrophy.
    Bush PG, Parisinos CA, Hall AC.
    J Cell Physiol; 2008 Mar; 214(3):621-9. PubMed ID: 17786946
    [Abstract] [Full Text] [Related]

  • 6. Apoptosis of terminal hypertrophic chondrocytes in an in vitro model of endochondral ossification.
    Cheung JO, Grant ME, Jones CJ, Hoyland JA, Freemont AJ, Hillarby MC.
    J Pathol; 2003 Nov; 201(3):496-503. PubMed ID: 14595763
    [Abstract] [Full Text] [Related]

  • 7. Primary culture of rat growth plate chondrocytes: an in vitro model of growth plate histotype, matrix vesicle biogenesis and mineralization.
    Garimella R, Bi X, Camacho N, Sipe JB, Anderson HC.
    Bone; 2004 Jun; 34(6):961-70. PubMed ID: 15193542
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates.
    Breur GJ, VanEnkevort BA, Farnum CE, Wilsman NJ.
    J Orthop Res; 1991 May; 9(3):348-59. PubMed ID: 2010838
    [Abstract] [Full Text] [Related]

  • 13. Inhibition of growth plate angiogenesis and endochondral ossification with diminished expression of MMP-13 in hypertrophic chondrocytes in FGF-2-treated rats.
    Nagai H, Aoki M.
    J Bone Miner Metab; 2002 May; 20(3):142-7. PubMed ID: 11984696
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Morphometric analysis of chondrocyte hypertrophy.
    Buckwalter JA, Mower D, Ungar R, Schaeffer J, Ginsberg B.
    J Bone Joint Surg Am; 1986 Feb; 68(2):243-55. PubMed ID: 3944163
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Electron microscopic study of condylar cartilage of rat mandible stained with ruthenium red: proteoglycans and hypertrophic chondrocytes.
    Yoshioka C, Yagi T.
    J Craniofac Genet Dev Biol; 1989 Feb; 9(3):303-14. PubMed ID: 2482300
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.