These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 22020382

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Exploring graphene nanocolloids as potential substrates for the enhancement of Raman scattering.
    Sun S, Zhang Z, Wu P.
    ACS Appl Mater Interfaces; 2013 Jun 12; 5(11):5085-90. PubMed ID: 23639455
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers.
    Li H, Han L, Cooper-White JJ, Kim I.
    Nanoscale; 2012 Feb 21; 4(4):1355-61. PubMed ID: 22278595
    [Abstract] [Full Text] [Related]

  • 9. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG, Cortés E, Hernández-Nieves AD, Carro P, Usaj G, Balseiro CA, Vela ME, Salvarezza RC, Fainstein A.
    ACS Nano; 2011 Jul 26; 5(7):5433-43. PubMed ID: 21675769
    [Abstract] [Full Text] [Related]

  • 10. Fabrication of small-sized silver NPs/graphene sheets for high-quality surface-enhanced Raman scattering.
    Zhao H, Fu H, Zhao T, Wang L, Tan T.
    J Colloid Interface Sci; 2012 Jun 01; 375(1):30-4. PubMed ID: 22436726
    [Abstract] [Full Text] [Related]

  • 11. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M, Brolo AG.
    Phys Chem Chem Phys; 2009 Sep 14; 11(34):7381-9. PubMed ID: 19690709
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering.
    Zhang X, Shi C, Liu E, Li J, Zhao N, He C.
    Nanoscale; 2015 Oct 28; 7(40):17079-87. PubMed ID: 26419953
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Role of nanoparticle surface charge in surface-enhanced Raman scattering.
    Alvarez-Puebla RA, Arceo E, Goulet PJ, Garrido JJ, Aroca RF.
    J Phys Chem B; 2005 Mar 10; 109(9):3787-92. PubMed ID: 16851426
    [Abstract] [Full Text] [Related]

  • 16. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.
    Losurdo M, Yi C, Suvorova A, Rubanov S, Kim TH, Giangregorio MM, Jiao W, Bergmair I, Bruno G, Brown AS.
    ACS Nano; 2014 Mar 25; 8(3):3031-41. PubMed ID: 24575951
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles.
    Chen J, Mårtensson T, Dick KA, Deppert K, Xu HQ, Samuelson L, Xu H.
    Nanotechnology; 2008 Jul 09; 19(27):275712. PubMed ID: 21828724
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.