These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


548 related items for PubMed ID: 22020437

  • 1. miR-34 miRNAs provide a barrier for somatic cell reprogramming.
    Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C, Ozturk A, Hicks GG, Hannon GJ, He L.
    Nat Cell Biol; 2011 Oct 23; 13(11):1353-60. PubMed ID: 22020437
    [Abstract] [Full Text] [Related]

  • 2. Spermatogonial stem cells and progenitors are refractory to reprogramming to pluripotency by the transcription factors Oct3/4, c-Myc, Sox2 and Klf4.
    Corbineau S, Lassalle B, Givelet M, Souissi-Sarahoui I, Firlej V, Romeo PH, Allemand I, Riou L, Fouchet P.
    Oncotarget; 2017 Feb 07; 8(6):10050-10063. PubMed ID: 28052023
    [Abstract] [Full Text] [Related]

  • 3. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2.
    Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, Ransohoff KJ, Burridge P, Wu JC.
    Stem Cells; 2013 Feb 07; 31(2):259-68. PubMed ID: 23136034
    [Abstract] [Full Text] [Related]

  • 4. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells.
    Vazquez-Martin A, Vellon L, Quirós PM, Cufí S, Ruiz de Galarreta E, Oliveras-Ferraros C, Martin AG, Martin-Castillo B, López-Otín C, Menendez JA.
    Cell Cycle; 2012 Mar 01; 11(5):974-89. PubMed ID: 22333578
    [Abstract] [Full Text] [Related]

  • 5. Small RNA-mediated regulation of iPS cell generation.
    Li Z, Yang CS, Nakashima K, Rana TM.
    EMBO J; 2011 Mar 02; 30(5):823-34. PubMed ID: 21285944
    [Abstract] [Full Text] [Related]

  • 6. Human fibroblast reprogramming to pluripotent stem cells regulated by the miR19a/b-PTEN axis.
    He X, Cao Y, Wang L, Han Y, Zhong X, Zhou G, Cai Y, Zhang H, Gao P.
    PLoS One; 2014 Mar 02; 9(4):e95213. PubMed ID: 24740298
    [Abstract] [Full Text] [Related]

  • 7. High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells.
    Chlon TM, Hoskins EE, Mayhew CN, Wikenheiser-Brokamp KA, Davies SM, Mehta P, Myers KC, Wells JM, Wells SI.
    J Virol; 2014 Oct 02; 88(19):11315-26. PubMed ID: 25031356
    [Abstract] [Full Text] [Related]

  • 8. Establishment and optimal culture conditions of microrna-induced pluripotent stem cells generated from HEK293 cells via transfection of microrna-302s expression vector.
    Koide N, Yasuda K, Kadomatsu K, Takei Y.
    Nagoya J Med Sci; 2012 Feb 02; 74(1-2):157-65. PubMed ID: 22515122
    [Abstract] [Full Text] [Related]

  • 9. NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction.
    Mai T, Markov GJ, Brady JJ, Palla A, Zeng H, Sebastiano V, Blau HM.
    Nat Cell Biol; 2018 Aug 02; 20(8):900-908. PubMed ID: 30013107
    [Abstract] [Full Text] [Related]

  • 10. The genetics of induced pluripotency.
    Ralston A, Rossant J.
    Reproduction; 2010 Jan 02; 139(1):35-44. PubMed ID: 19605512
    [Abstract] [Full Text] [Related]

  • 11. Identification of Oct4-activating compounds that enhance reprogramming efficiency.
    Li W, Tian E, Chen ZX, Sun G, Ye P, Yang S, Lu D, Xie J, Ho TV, Tsark WM, Wang C, Horne DA, Riggs AD, Yip ML, Shi Y.
    Proc Natl Acad Sci U S A; 2012 Dec 18; 109(51):20853-8. PubMed ID: 23213213
    [Abstract] [Full Text] [Related]

  • 12. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells.
    Horikawa I, Park KY, Isogaya K, Hiyoshi Y, Li H, Anami K, Robles AI, Mondal AM, Fujita K, Serrano M, Harris CC.
    Cell Death Differ; 2017 Jun 18; 24(6):1017-1028. PubMed ID: 28362428
    [Abstract] [Full Text] [Related]

  • 13. Efficient induction of pluripotent stem cells from granulosa cells by Oct4 and Sox2.
    Mao J, Zhang Q, Ye X, Liu K, Liu L.
    Stem Cells Dev; 2014 Apr 01; 23(7):779-89. PubMed ID: 24083387
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Nuclear reprogramming with a non-integrating human RNA virus.
    Driscoll CB, Tonne JM, El Khatib M, Cattaneo R, Ikeda Y, Devaux P.
    Stem Cell Res Ther; 2015 Mar 26; 6(1):48. PubMed ID: 25889591
    [Abstract] [Full Text] [Related]

  • 16. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4.
    Wang L, Huang D, Huang C, Yin Y, Vali K, Zhang M, Tang Y.
    Stem Cell Res; 2017 Dec 26; 25():88-97. PubMed ID: 29125994
    [Abstract] [Full Text] [Related]

  • 17. Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability.
    Zhan Z, Song L, Zhang W, Gu H, Cheng H, Zhang Y, Yang Y, Ji G, Feng H, Cheng T, Li Y.
    Cell Death Dis; 2019 Mar 20; 10(4):271. PubMed ID: 30894510
    [Abstract] [Full Text] [Related]

  • 18. Long noncoding RNAs sustain high expression levels of exogenous octamer-binding protein 4 by sponging regulatory microRNAs during cellular reprogramming.
    Zhang X, Zhang J, Zheng K, Zhang H, Pei X, Yin Z, Wen D, Kong Q.
    J Biol Chem; 2019 Nov 22; 294(47):17863-17874. PubMed ID: 31624145
    [Abstract] [Full Text] [Related]

  • 19. miR-16 enhances miR-302/367-induced reprogramming and tumor suppression in breast cancer cells.
    Hoseinbeyki M, Taha MF, Javeri A.
    IUBMB Life; 2020 May 22; 72(5):1075-1086. PubMed ID: 32057163
    [Abstract] [Full Text] [Related]

  • 20. Manipulation of KLF4 expression generates iPSCs paused at successive stages of reprogramming.
    Nishimura K, Kato T, Chen C, Oinam L, Shiomitsu E, Ayakawa D, Ohtaka M, Fukuda A, Nakanishi M, Hisatake K.
    Stem Cell Reports; 2014 Nov 11; 3(5):915-29. PubMed ID: 25418733
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.