These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


258 related items for PubMed ID: 22030847

  • 1. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness.
    Bozinovic F, Bastías DA, Boher F, Clavijo-Baquet S, Estay SA, Angilletta MJ.
    Physiol Biochem Zool; 2011; 84(6):543-52. PubMed ID: 22030847
    [Abstract] [Full Text] [Related]

  • 2. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly.
    Bozinovic F, Medina NR, Alruiz JM, Cavieres G, Sabat P.
    J Comp Physiol B; 2016 Jul; 186(5):581-7. PubMed ID: 27003422
    [Abstract] [Full Text] [Related]

  • 3. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS, Clusella-Trullas S, Deere JA, Chown SL.
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [Abstract] [Full Text] [Related]

  • 4. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J, Tomcala A, Sørensen JG, Holmstrup M, Krogh PH, Simek P, Kostál V.
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [Abstract] [Full Text] [Related]

  • 5. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.
    Milton CC, Partridge L.
    J Insect Physiol; 2008 Jan; 54(1):32-40. PubMed ID: 17884085
    [Abstract] [Full Text] [Related]

  • 6. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster.
    Macdonald SS, Rako L, Batterham P, Hoffmann AA.
    J Insect Physiol; 2004 Aug; 50(8):695-700. PubMed ID: 15288203
    [Abstract] [Full Text] [Related]

  • 7. Complexity of the cold acclimation response in Drosophila melanogaster.
    Rako L, Hoffmann AA.
    J Insect Physiol; 2006 Jan; 52(1):94-104. PubMed ID: 16257412
    [Abstract] [Full Text] [Related]

  • 8. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae).
    Lachenicht MW, Clusella-Trullas S, Boardman L, Le Roux C, Terblanche JS.
    J Insect Physiol; 2010 Jul; 56(7):822-30. PubMed ID: 20197070
    [Abstract] [Full Text] [Related]

  • 9. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J, Kearney MR, Hoffmann AA.
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [Abstract] [Full Text] [Related]

  • 10. Impact of experimental thermal amplitude on ectotherm performance: Adaptation to climate change variability?
    Folguera G, Bastías DA, Bozinovic F.
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Nov; 154(3):389-93. PubMed ID: 19622394
    [Abstract] [Full Text] [Related]

  • 11. Life history consequences of temperature transients in Drosophila melanogaster.
    Dillon ME, Cahn LR, Huey RB.
    J Exp Biol; 2007 Aug; 210(Pt 16):2897-904. PubMed ID: 17690238
    [Abstract] [Full Text] [Related]

  • 12. Acclimation of thermal physiology in natural populations of Drosophila melanogaster : a test of an optimality model.
    Cooper BS, Czarnoleski M, Angilletta MJ.
    J Evol Biol; 2010 Nov; 23(11):2346-55. PubMed ID: 20825540
    [Abstract] [Full Text] [Related]

  • 13. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature.
    Loeschcke V, Hoffmann AA.
    Am Nat; 2007 Feb; 169(2):175-83. PubMed ID: 17211802
    [Abstract] [Full Text] [Related]

  • 14. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster.
    Ransberry VE, MacMillan HA, Sinclair BJ.
    Physiol Biochem Zool; 2011 Feb; 84(6):553-9. PubMed ID: 22030848
    [Abstract] [Full Text] [Related]

  • 15. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR, Harrison JF, Kirkton SD, Roberts SP.
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [Abstract] [Full Text] [Related]

  • 16. Coping with daily thermal variability: behavioural performance of an ectotherm model in a warming world.
    Rojas JM, Castillo SB, Folguera G, Abades S, Bozinovic F.
    PLoS One; 2014 Jul; 9(9):e106897. PubMed ID: 25207653
    [Abstract] [Full Text] [Related]

  • 17. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF, Loeschcke V, Kristensen TN.
    PLoS One; 2015 Jul; 10(6):e0130307. PubMed ID: 26075607
    [Abstract] [Full Text] [Related]

  • 18. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.
    Sgrò CM, Overgaard J, Kristensen TN, Mitchell KA, Cockerell FE, Hoffmann AA.
    J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849
    [Abstract] [Full Text] [Related]

  • 19. Proteomic profiling of thermal acclimation in Drosophila melanogaster.
    Colinet H, Overgaard J, Com E, Sørensen JG.
    Insect Biochem Mol Biol; 2013 Apr; 43(4):352-65. PubMed ID: 23416132
    [Abstract] [Full Text] [Related]

  • 20. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress.
    Boher F, Trefault N, Piulachs MD, Bellés X, Godoy-Herrera R, Bozinovic F.
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug; 162(4):391-6. PubMed ID: 22561660
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.