These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 22032693
1. Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. Li Y, Böck A, Haseneyer G, Korzun V, Wilde P, Schön CC, Ankerst DP, Bauer E. BMC Plant Biol; 2011 Oct 27; 11():146. PubMed ID: 22032693 [Abstract] [Full Text] [Related]
2. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. Li Y, Haseneyer G, Schön CC, Ankerst D, Korzun V, Wilde P, Bauer E. BMC Plant Biol; 2011 Jan 10; 11():6. PubMed ID: 21219606 [Abstract] [Full Text] [Related]
3. Association genetics studies on frost tolerance in wheat (Triticum aestivum L.) reveal new highly conserved amino acid substitutions in CBF-A3, CBF-A15, VRN3 and PPD1 genes. Babben S, Schliephake E, Janitza P, Berner T, Keilwagen J, Koch M, Arana-Ceballos FA, Templer SE, Chesnokov Y, Pshenichnikova T, Schondelmaier J, Börner A, Pillen K, Ordon F, Perovic D. BMC Genomics; 2018 May 29; 19(1):409. PubMed ID: 29843596 [Abstract] [Full Text] [Related]
4. Genome-wide association study identifies favorable SNP alleles and candidate genes for frost tolerance in pea. Beji S, Fontaine V, Devaux R, Thomas M, Negro SS, Bahrman N, Siol M, Aubert G, Burstin J, Hilbert JL, Delbreil B, Lejeune-Hénaut I. BMC Genomics; 2020 Aug 04; 21(1):536. PubMed ID: 32753054 [Abstract] [Full Text] [Related]
7. Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Båga M, Bahrani H, Larsen J, Hackauf B, Graf RJ, Laroche A, Chibbar RN. Sci Rep; 2022 Apr 06; 12(1):5793. PubMed ID: 35388069 [Abstract] [Full Text] [Related]
8. Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, Börner A. Theor Appl Genet; 2007 Apr 06; 114(6):1105-16. PubMed ID: 17345059 [Abstract] [Full Text] [Related]
9. The GAMYB gene in rye: sequence, polymorphisms, map location, allele-specific markers, and relationship with α-amylase activity. Bienias A, Góralska M, Masojć P, Milczarski P, Myśków B. BMC Genomics; 2020 Aug 24; 21(1):578. PubMed ID: 32831010 [Abstract] [Full Text] [Related]
10. Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco. Shi BJ, Gustafson JP, Button J, Miyazaki J, Pallotta M, Gustafson N, Zhou H, Langridge P, Collins NC. Theor Appl Genet; 2009 Aug 24; 119(4):695-704. PubMed ID: 19529908 [Abstract] [Full Text] [Related]
11. ScBx gene based association analysis of hydroxamate content in rye (Secale cereale L.). Rakoczy-Trojanowska M, Orczyk W, Krajewski P, Bocianowski J, Stochmal A, Kowalczyk M. J Appl Genet; 2017 Feb 24; 58(1):1-9. PubMed ID: 27465692 [Abstract] [Full Text] [Related]
12. Genome-wide identification and expression analysis of the annexin gene family in rye (Secale cereale L.). Hyeon Jeong J, Joo Jung W, Weon Seo Y. Gene; 2022 Sep 05; 838():146704. PubMed ID: 35772654 [Abstract] [Full Text] [Related]
13. Selective sweeps identification in distinct groups of cultivated rye (Secale cereale L.) germplasm provides potential candidate genes for crop improvement. Hawliczek A, Borzęcka E, Tofil K, Alachiotis N, Bolibok L, Gawroński P, Siekmann D, Hackauf B, Dušinský R, Švec M, Bolibok-Brągoszewska H. BMC Plant Biol; 2023 Jun 16; 23(1):323. PubMed ID: 37328739 [Abstract] [Full Text] [Related]
14. Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, Wilde P, Reif JC. BMC Genomics; 2012 Dec 17; 13():706. PubMed ID: 23244545 [Abstract] [Full Text] [Related]
15. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández-Riquer MV, Gallego FJ. Theor Appl Genet; 2007 Jan 17; 114(2):249-60. PubMed ID: 17063338 [Abstract] [Full Text] [Related]
16. Copy number variation of CBF-A14 at the Fr-A2 locus determines frost tolerance in winter durum wheat. Sieber AN, Longin CF, Leiser WL, Würschum T. Theor Appl Genet; 2016 Jun 17; 129(6):1087-97. PubMed ID: 26883046 [Abstract] [Full Text] [Related]
17. A Genome-Wide Association Study Pinpoints Quantitative Trait Genes for Plant Height, Heading Date, Grain Quality, and Yield in Rye (Secale cereale L.). Siekmann D, Jansen G, Zaar A, Kilian A, Fromme FJ, Hackauf B. Front Plant Sci; 2021 Jun 17; 12():718081. PubMed ID: 34777409 [Abstract] [Full Text] [Related]
18. From RNA-seq to large-scale genotyping - genomics resources for rye (Secale cereale L.). Haseneyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schön CC, Taudien S, Scholz U, Stein N, Mayer KF, Bauer E. BMC Plant Biol; 2011 Sep 28; 11():131. PubMed ID: 21951788 [Abstract] [Full Text] [Related]
19. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. Chopra R, Burow G, Hayes C, Emendack Y, Xin Z, Burke J. BMC Genomics; 2015 Dec 09; 16():1040. PubMed ID: 26645959 [Abstract] [Full Text] [Related]
20. Putative candidate genes responsible for leaf rolling in rye (Secale cereale L.). Myśków B, Góralska M, Lenarczyk N, Czyczyło-Mysza I, Stojałowski S. BMC Genet; 2018 Aug 09; 19(1):57. PubMed ID: 30092756 [Abstract] [Full Text] [Related] Page: [Next] [New Search]