These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 22036081

  • 1. Influence of time to achieve substrate distribution equilibrium between brain tissue and blood on quantitation of the blood-brain barrier P-glycoprotein effect.
    Padowski JM, Pollack GM.
    Brain Res; 2011 Dec 02; 1426():1-17. PubMed ID: 22036081
    [Abstract] [Full Text] [Related]

  • 2. Modulation of P-glycoprotein transport activity in the mouse blood-brain barrier by rifampin.
    Zong J, Pollack GM.
    J Pharmacol Exp Ther; 2003 Aug 02; 306(2):556-62. PubMed ID: 12721332
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Regional differences in capillary density, perfusion rate, and P-glycoprotein activity: a quantitative analysis of regional drug exposure in the brain.
    Zhao R, Pollack GM.
    Biochem Pharmacol; 2009 Oct 15; 78(8):1052-9. PubMed ID: 19523457
    [Abstract] [Full Text] [Related]

  • 6. P-glycoprotein efflux at the blood-brain barrier mediates differences in brain disposition and pharmacodynamics between two structurally related neurokinin-1 receptor antagonists.
    Smith BJ, Doran AC, McLean S, Tingley FD, O'Neill BT, Kajiji SM.
    J Pharmacol Exp Ther; 2001 Sep 15; 298(3):1252-9. PubMed ID: 11504828
    [Abstract] [Full Text] [Related]

  • 7. Comparison of drug efflux transport kinetics in various blood-brain barrier models.
    Bachmeier CJ, Trickler WJ, Miller DW.
    Drug Metab Dispos; 2006 Jun 15; 34(6):998-1003. PubMed ID: 16554372
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Verapamil P-glycoprotein transport across the rat blood-brain barrier: cyclosporine, a concentration inhibition analysis, and comparison with human data.
    Hsiao P, Sasongko L, Link JM, Mankoff DA, Muzi M, Collier AC, Unadkat JD.
    J Pharmacol Exp Ther; 2006 May 15; 317(2):704-10. PubMed ID: 16415090
    [Abstract] [Full Text] [Related]

  • 11. P-glycoprotein reduces the ability of amitriptyline metabolites to cross the blood brain barrier in mice after a 10-day administration of amitriptyline.
    Grauer MT, Uhr M.
    J Psychopharmacol; 2004 Mar 15; 18(1):66-74. PubMed ID: 15107187
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Kinetic evidence for active efflux transport across the blood-brain barrier of quinolone antibiotics.
    Ooie T, Terasaki T, Suzuki H, Sugiyama Y.
    J Pharmacol Exp Ther; 1997 Oct 15; 283(1):293-304. PubMed ID: 9336336
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies.
    Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF.
    J Pharmacol Exp Ther; 2001 Feb 15; 296(2):551-7. PubMed ID: 11160643
    [Abstract] [Full Text] [Related]

  • 19. Efflux transport of a new quinolone antibacterial agent, HSR-903, across the blood-brain barrier.
    Murata M, Tamai I, Kato H, Nagata O, Tsuji A.
    J Pharmacol Exp Ther; 1999 Jul 15; 290(1):51-7. PubMed ID: 10381759
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.