These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


635 related items for PubMed ID: 22039765

  • 1. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W, Lu P, Zhang Z, Guo W.
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [Abstract] [Full Text] [Related]

  • 2. Magnetic and electronic properties of α-graphyne nanoribbons.
    Yue Q, Chang S, Kang J, Tan J, Qin S, Li J.
    J Chem Phys; 2012 Jun 28; 136(24):244702. PubMed ID: 22755594
    [Abstract] [Full Text] [Related]

  • 3. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ.
    J Chem Phys; 2008 May 21; 128(19):194701. PubMed ID: 18500880
    [Abstract] [Full Text] [Related]

  • 4. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F, Gökoğlu G, Aktürk E.
    J Phys Condens Matter; 2014 Aug 13; 26(32):325303. PubMed ID: 25049113
    [Abstract] [Full Text] [Related]

  • 5. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties.
    Li Y, Zhou Z, Zhang S, Chen Z.
    J Am Chem Soc; 2008 Dec 10; 130(49):16739-44. PubMed ID: 19554733
    [Abstract] [Full Text] [Related]

  • 6. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations.
    Tang S, Cao Z.
    Phys Chem Chem Phys; 2010 Mar 14; 12(10):2313-20. PubMed ID: 20449344
    [Abstract] [Full Text] [Related]

  • 7. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V, Hod O, Peralta JE, Scuseria GE.
    Acc Chem Res; 2011 Apr 19; 44(4):269-79. PubMed ID: 21388164
    [Abstract] [Full Text] [Related]

  • 8. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL, Wang D, Zhu Z, Zhang ZH.
    Phys Chem Chem Phys; 2015 Oct 07; 17(37):24020-8. PubMed ID: 26313414
    [Abstract] [Full Text] [Related]

  • 9. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG, Miwa RH, Srivastava GP.
    J Chem Phys; 2008 May 28; 128(20):201101. PubMed ID: 18513000
    [Abstract] [Full Text] [Related]

  • 10. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.
    Lou P.
    Phys Chem Chem Phys; 2011 Oct 14; 13(38):17194-204. PubMed ID: 21879055
    [Abstract] [Full Text] [Related]

  • 11. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M, Panigrahi P, Yunguo L, Ramzan M, Ahuja R.
    Nanotechnology; 2014 Apr 25; 25(16):165703. PubMed ID: 24675167
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L, Tang C, Wehling T, Frauenheim T, Chen C.
    Nanoscale; 2013 Apr 21; 5(8):3306-14. PubMed ID: 23463363
    [Abstract] [Full Text] [Related]

  • 14. The properties of BiSb nanoribbons from first-principles calculations.
    Lv HY, Liu HJ, Tan XJ, Pan L, Wen YW, Shi J, Tang XF.
    Nanoscale; 2012 Jan 21; 4(2):511-7. PubMed ID: 22101571
    [Abstract] [Full Text] [Related]

  • 15. Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons.
    Botello-Méndez AR, López-Urías F, Terrones M, Terrones H.
    Nanotechnology; 2009 Aug 12; 20(32):325703. PubMed ID: 19620764
    [Abstract] [Full Text] [Related]

  • 16. Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: a computational investigation.
    Li F, Chen Z.
    Nanoscale; 2013 Jun 21; 5(12):5321-33. PubMed ID: 23392527
    [Abstract] [Full Text] [Related]

  • 17. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L, Wei P, Wei J, Sanvito S, Hou S.
    J Phys Condens Matter; 2011 Oct 26; 23(42):425301. PubMed ID: 21969127
    [Abstract] [Full Text] [Related]

  • 18. Curvature effects on electronic properties of armchair graphene nanoribbons without passivation.
    Chang SL, Wu BR, Yang PH, Lin MF.
    Phys Chem Chem Phys; 2012 Dec 21; 14(47):16409-14. PubMed ID: 23132378
    [Abstract] [Full Text] [Related]

  • 19. Electronic structures of SiC nanoribbons.
    Sun L, Li Y, Li Z, Li Q, Zhou Z, Chen Z, Yang J, Hou JG.
    J Chem Phys; 2008 Nov 07; 129(17):174114. PubMed ID: 19045340
    [Abstract] [Full Text] [Related]

  • 20. Electronic properties of the biphenylene sheet and its one-dimensional derivatives.
    Hudspeth MA, Whitman BW, Barone V, Peralta JE.
    ACS Nano; 2010 Aug 24; 4(8):4565-70. PubMed ID: 20669980
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.