These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


222 related items for PubMed ID: 22050765

  • 1. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy.
    Malherbe J, Isaure MP, Séby F, Watson RP, Rodriguez-Gonzalez P, Stutzman PE, Davis CW, Maurizio C, Unceta N, Sieber JR, Long SE, Donard OF.
    Environ Sci Technol; 2011 Dec 15; 45(24):10492-500. PubMed ID: 22050765
    [Abstract] [Full Text] [Related]

  • 2. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR).
    Elzinga EJ, Cirmo A.
    J Hazard Mater; 2010 Nov 15; 183(1-3):145-54. PubMed ID: 20674158
    [Abstract] [Full Text] [Related]

  • 3. Modifications to EPA Method 3060A to Improve Extraction of Cr(VI) from Chromium Ore Processing Residue-Contaminated Soils.
    Mills CT, Bern CR, Wolf RE, Foster AL, Morrison JM, Benzel WM.
    Environ Sci Technol; 2017 Oct 03; 51(19):11235-11243. PubMed ID: 28892376
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques.
    Papassiopi N, Kontoyianni A, Vaxevanidou K, Xenidis A.
    Sci Total Environ; 2009 Jan 01; 407(2):925-36. PubMed ID: 18945478
    [Abstract] [Full Text] [Related]

  • 7. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels.
    Horowitz SB, Finley BL.
    J Toxicol Environ Health; 1993 Dec 01; 40(4):585-99. PubMed ID: 8277520
    [Abstract] [Full Text] [Related]

  • 8. Time-resolved XANES speciation studies of chromium on soils during simulated contamination.
    Kappen P, Welter E, Beck PH, McNamara JM, Moroney KA, Roe GM, Read A, Pigram PJ.
    Talanta; 2008 Jun 15; 75(5):1284-92. PubMed ID: 18585214
    [Abstract] [Full Text] [Related]

  • 9. Validation of a European standard for the determination of hexavalent chromium in solid material.
    Tirez K, Scharf H, Calzolari D, Cleven R, Kisser M, Lück D.
    J Environ Monit; 2007 Jul 15; 9(7):749-59. PubMed ID: 17607396
    [Abstract] [Full Text] [Related]

  • 10. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.
    Du J, Lu J, Wu Q, Jing C.
    J Hazard Mater; 2012 May 15; 215-216():152-8. PubMed ID: 22417394
    [Abstract] [Full Text] [Related]

  • 11. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.
    Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJ, Graham MC, Ngwenya BT, Farmer JG.
    Sci Total Environ; 2010 Dec 15; 409(2):267-77. PubMed ID: 21035835
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of sequential extraction procedures for soluble and insoluble hexavalent chromium compounds in workplace air samples.
    Ashley K, Applegate GT, Marcy AD, Drake PL, Pierce PA, Carabin N, Demange M.
    J Environ Monit; 2009 Feb 15; 11(2):318-25. PubMed ID: 19212588
    [Abstract] [Full Text] [Related]

  • 13. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR).
    Wazne M, Jagupilla SC, Moon DH, Jagupilla SC, Christodoulatos C, Kim MG.
    J Hazard Mater; 2007 May 17; 143(3):620-8. PubMed ID: 17276597
    [Abstract] [Full Text] [Related]

  • 14. Assessment of the human health risks posed by exposure to chromium-contaminated soils.
    Sheehan PJ, Meyer DM, Sauer MM, Paustenbach DJ.
    J Toxicol Environ Health; 1991 Feb 17; 32(2):161-201. PubMed ID: 1995927
    [Abstract] [Full Text] [Related]

  • 15. The extractability of Cr(VI) from contaminated soil in synthetic sweat.
    Wainman T, Hazen RE, Lioy PJ.
    J Expo Anal Environ Epidemiol; 1994 Feb 17; 4(2):171-81. PubMed ID: 7549472
    [Abstract] [Full Text] [Related]

  • 16. Soil humic acids may favour the persistence of hexavalent chromium in soil.
    Leita L, Margon A, Pastrello A, Arcon I, Contin M, Mosetti D.
    Environ Pollut; 2009 Jun 17; 157(6):1862-6. PubMed ID: 19231051
    [Abstract] [Full Text] [Related]

  • 17. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue.
    Chrysochoou M, Dermatas D.
    J Hazard Mater; 2007 Mar 15; 141(2):370-7. PubMed ID: 16842911
    [Abstract] [Full Text] [Related]

  • 18. Validation of an electrothermal atomization atomic absorption spectrometry method for quantification of total chromium and chromium(VI) in wild mushrooms and underlying soils.
    Figueiredo E, Soares ME, Baptista P, Castro M, Bastos ML.
    J Agric Food Chem; 2007 Aug 22; 55(17):7192-8. PubMed ID: 17661487
    [Abstract] [Full Text] [Related]

  • 19. Rapid leaching of Cr(VI) in soil with Na3PO4 in the determination of hexavalent chromium by electrothermal atomic absorption spectrometry.
    Mandiwana KL.
    Talanta; 2008 Jan 15; 74(4):736-40. PubMed ID: 18371702
    [Abstract] [Full Text] [Related]

  • 20. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate.
    Jagupilla SC, Moon DH, Wazne M, Christodoulatos C, Kim MG.
    J Hazard Mater; 2009 Aug 30; 168(1):121-8. PubMed ID: 19272700
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.