These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 22056293
1. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: critical contribution of kringle-4 revealed by the mutagenesis approaches. Joshi KK, Nanda JS, Kumar P, Sahni G. Biochim Biophys Acta; 2012 Feb; 1824(2):326-33. PubMed ID: 22056293 [Abstract] [Full Text] [Related]
2. Domain truncation studies reveal that the streptokinase-plasmin activator complex utilizes long range protein-protein interactions with macromolecular substrate to maximize catalytic turnover. Sundram V, Nanda JS, Rajagopal K, Dhar J, Chaudhary A, Sahni G. J Biol Chem; 2003 Aug 15; 278(33):30569-77. PubMed ID: 12773528 [Abstract] [Full Text] [Related]
3. Role of the 88-97 loop in plasminogen activation by streptokinase probed through site-specific mutagenesis. Yadav S, Datt M, Singh B, Sahni G. Biochim Biophys Acta; 2008 Sep 15; 1784(9):1310-8. PubMed ID: 18590837 [Abstract] [Full Text] [Related]
4. Kringles of substrate plasminogen provide a 'catalytic switch' in plasminogen to plasmin turnover by Streptokinase. Sharma V, Kumar S, Sahni G. Biochem J; 2020 Mar 13; 477(5):953-970. PubMed ID: 32069359 [Abstract] [Full Text] [Related]
5. Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis. Chaudhary A, Vasudha S, Rajagopal K, Komath SS, Garg N, Yadav M, Mande SC, Sahni G. Protein Sci; 1999 Dec 13; 8(12):2791-805. PubMed ID: 10631997 [Abstract] [Full Text] [Related]
6. Involvement of a nine-residue loop of streptokinase in the generation of macromolecular substrate specificity by the activator complex through interaction with substrate kringle domains. Dhar J, Pande AH, Sundram V, Nanda JS, Mande SC, Sahni G. J Biol Chem; 2002 Apr 12; 277(15):13257-67. PubMed ID: 11821385 [Abstract] [Full Text] [Related]
8. Regulation of nonproteolytic active site formation in plasminogen. Gladysheva IP, Sazonova IY, Houng A, Hedstrom L, Reed GL. Biochemistry; 2007 Jul 31; 46(30):8879-87. PubMed ID: 17616171 [Abstract] [Full Text] [Related]
9. The construction and expression of chimeric urokinase-type plasminogen activator genes containing kringle domains of human plasminogen. Boutaud A, Castellino FJ. Arch Biochem Biophys; 1993 Jun 31; 303(2):222-30. PubMed ID: 8512311 [Abstract] [Full Text] [Related]
12. Functional roles of streptokinase C-terminal flexible peptide in active site formation and substrate recognition in plasminogen activation. Zhai P, Wakeham N, Loy JA, Zhang XC. Biochemistry; 2003 Jan 14; 42(1):114-20. PubMed ID: 12515545 [Abstract] [Full Text] [Related]
13. Multiple exosites distributed across the three domains of streptokinase co-operate to generate high catalytic rates in the streptokinase-plasmin activator complex. Aneja R, Datt M, Yadav S, Sahni G. Biochemistry; 2013 Dec 10; 52(49):8957-68. PubMed ID: 23919427 [Abstract] [Full Text] [Related]
17. Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase.plasmin(ogen) catalytic complexes. Panizzi P, Boxrud PD, Verhamme IM, Bock PE. J Biol Chem; 2006 Sep 15; 281(37):26774-8. PubMed ID: 16857686 [Abstract] [Full Text] [Related]
18. Mapping of the plasminogen binding site of streptokinase with short synthetic peptides. Nihalani D, Raghava GP, Sahni G. Protein Sci; 1997 Jun 15; 6(6):1284-92. PubMed ID: 9194188 [Abstract] [Full Text] [Related]