These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 22056875
1. Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest. Russell P, Hennessy BT, Li J, Carey MS, Bast RC, Freeman T, Venkitaraman AR. Oncogene; 2012 May 10; 31(19):2450-60. PubMed ID: 22056875 [Abstract] [Full Text] [Related]
2. Boosting the apoptotic response of high-grade serous ovarian cancers with CCNE1 amplification to paclitaxel in vitro by targeting APC/C and the pro-survival protein MCL-1. Raab M, Kobayashi NF, Becker S, Kurunci-Csacsko E, Krämer A, Strebhardt K, Sanhaji M. Int J Cancer; 2020 Feb 15; 146(4):1086-1098. PubMed ID: 31286496 [Abstract] [Full Text] [Related]
3. Antagonizing the spindle assembly checkpoint silencing enhances paclitaxel and Navitoclax-mediated apoptosis with distinct mechanistic. Henriques AC, Silva PMA, Sarmento B, Bousbaa H. Sci Rep; 2021 Feb 18; 11(1):4139. PubMed ID: 33603057 [Abstract] [Full Text] [Related]
4. A Pyranoxanthone as a Potent Antimitotic and Sensitizer of Cancer Cells to Low Doses of Paclitaxel. França F, Silva PMA, Soares JX, Henriques AC, Loureiro DRP, Azevedo CMG, Afonso CMM, Bousbaa H. Molecules; 2020 Dec 10; 25(24):. PubMed ID: 33322077 [Abstract] [Full Text] [Related]
5. Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53. Yasuhira S, Shibazaki M, Nishiya M, Maesawa C. Cell Cycle; 2016 Dec 10; 15(23):3268-3277. PubMed ID: 27764550 [Abstract] [Full Text] [Related]
6. Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy. Giovinazzi S, Bellapu D, Morozov VM, Ishov AM. Cell Cycle; 2013 Aug 15; 12(16):2598-607. PubMed ID: 23907120 [Abstract] [Full Text] [Related]
7. Suppression of spindly delays mitotic exit and exacerbates cell death response of cancer cells treated with low doses of paclitaxel. Silva PM, Ribeiro N, Lima RT, Andrade C, Diogo V, Teixeira J, Florindo C, Tavares Á, Vasconcelos MH, Bousbaa H. Cancer Lett; 2017 May 28; 394():33-42. PubMed ID: 28249757 [Abstract] [Full Text] [Related]
8. The Phosphatase PP1 Promotes Mitotic Slippage through Mad3 Dephosphorylation. Ruggiero A, Katou Y, Shirahige K, Séveno M, Piatti S. Curr Biol; 2020 Jan 20; 30(2):335-343.e5. PubMed ID: 31928870 [Abstract] [Full Text] [Related]
9. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Huang HC, Shi J, Orth JD, Mitchison TJ. Cancer Cell; 2009 Oct 06; 16(4):347-58. PubMed ID: 19800579 [Abstract] [Full Text] [Related]
11. Mcl-1 dynamics influence mitotic slippage and death in mitosis. Sloss O, Topham C, Diez M, Taylor S. Oncotarget; 2016 Feb 02; 7(5):5176-92. PubMed ID: 26769847 [Abstract] [Full Text] [Related]
13. Unliganded progesterone receptors attenuate taxane-induced breast cancer cell death by modulating the spindle assembly checkpoint. Badtke MM, Jambal P, Dye WW, Spillman MA, Post MD, Horwitz KB, Jacobsen BM. Breast Cancer Res Treat; 2012 Jan 02; 131(1):75-87. PubMed ID: 21340479 [Abstract] [Full Text] [Related]
14. Caspase-3-dependent mitotic checkpoint inactivation by the small-molecule inducers of mitotic slippage SU6656 and geraldol. Riffell JL, Jänicke RU, Roberge M. Mol Cancer Ther; 2011 May 02; 10(5):839-49. PubMed ID: 21441410 [Abstract] [Full Text] [Related]
16. Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target the microtubules or mitotic spindle. Zhu Y, Zhou Y, Shi J. Cell Cycle; 2014 May 02; 13(11):1756-64. PubMed ID: 24694730 [Abstract] [Full Text] [Related]