These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1003 related items for PubMed ID: 22057130
1. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS. Nanoscale; 2011 Dec; 3(12):5120-5. PubMed ID: 22057130 [Abstract] [Full Text] [Related]
2. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity. Wang H, Liu J, Wu X, Tong Z, Deng Z. Nanotechnology; 2013 May 24; 24(20):205102. PubMed ID: 23609179 [Abstract] [Full Text] [Related]
4. Fabrication of Au@Ag core-shell NPs as enhanced CT contrast agents with broad antibacterial properties. Huo D, He J, Li H, Yu H, Shi T, Feng Y, Zhou Z, Hu Y. Colloids Surf B Biointerfaces; 2014 May 01; 117():29-35. PubMed ID: 24607958 [Abstract] [Full Text] [Related]
5. Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules. Güzel R, Ustündağ Z, Ekşi H, Keskin S, Taner B, Durgun ZG, Turan AA, Solak AO. J Colloid Interface Sci; 2010 Nov 01; 351(1):35-42. PubMed ID: 20701922 [Abstract] [Full Text] [Related]
10. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Sadeghi B, Rostami A, Momeni SS. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 05; 134():326-32. PubMed ID: 25022505 [Abstract] [Full Text] [Related]
11. Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Padmos JD, Boudreau RT, Weaver DF, Zhang P. Langmuir; 2015 Mar 31; 31(12):3745-52. PubMed ID: 25773131 [Abstract] [Full Text] [Related]
12. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Liu FK, Huang PW, Chang YC, Ko FH, Chu TC. Langmuir; 2005 Mar 15; 21(6):2519-25. PubMed ID: 15752048 [Abstract] [Full Text] [Related]
14. Enhanced antibacterial activities of leonuri herba extracts containing silver nanoparticles. Im AR, Han L, Kim ER, Kim J, Kim YS, Park Y. Phytother Res; 2012 Aug 15; 26(8):1249-55. PubMed ID: 22170803 [Abstract] [Full Text] [Related]
15. Silica-silver core-shell particles for antibacterial textile application. Nischala K, Rao TN, Hebalkar N. Colloids Surf B Biointerfaces; 2011 Jan 01; 82(1):203-8. PubMed ID: 20864320 [Abstract] [Full Text] [Related]
16. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 25; 135():1137-44. PubMed ID: 25189525 [Abstract] [Full Text] [Related]
17. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ. J Phys Chem B; 2006 Mar 09; 110(9):4002-6. PubMed ID: 16509689 [Abstract] [Full Text] [Related]
18. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Mohan Kumar K, Sinha M, Mandal BK, Ghosh AR, Siva Kumar K, Sreedhara Reddy P. Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun 09; 91():228-33. PubMed ID: 22381795 [Abstract] [Full Text] [Related]
19. Antibacterial cellulose paper made with silver-coated gold nanoparticles. Tsai TT, Huang TH, Chang CJ, Yi-Ju Ho N, Tseng YT, Chen CF. Sci Rep; 2017 Jun 09; 7(1):3155. PubMed ID: 28600506 [Abstract] [Full Text] [Related]
20. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. Colloids Surf B Biointerfaces; 2011 Mar 09; 83(1):42-8. PubMed ID: 21087843 [Abstract] [Full Text] [Related] Page: [Next] [New Search]