These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
289 related items for PubMed ID: 22065559
21. Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol-gel dip coating technique. Catauro M, Bollino F, Veronesi P, Lamanna G. Mater Sci Eng C Mater Biol Appl; 2014 Jun 01; 39():344-51. PubMed ID: 24863235 [Abstract] [Full Text] [Related]
22. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Saito E, Suarez-Gonzalez D, Murphy WL, Hollister SJ. Adv Healthc Mater; 2015 Mar 11; 4(4):621-32. PubMed ID: 25515846 [Abstract] [Full Text] [Related]
23. [Hydrolysis of poly(L-lactic acid) fibers and formation of low crystalline apatite on their surface by a biomimetic process]. Yuan X, Mak AF, He F. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep 11; 20(3):404-7. PubMed ID: 14564999 [Abstract] [Full Text] [Related]
24. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JC. J Biomed Mater Res A; 2013 Feb 11; 101(2):555-66. PubMed ID: 22949167 [Abstract] [Full Text] [Related]
25. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-epsilon-caprolactone. Marletta G, Ciapetti G, Satriano C, Perut F, Salerno M, Baldini N. Biomaterials; 2007 Feb 11; 28(6):1132-40. PubMed ID: 17118444 [Abstract] [Full Text] [Related]
26. Effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres. Xu F, Ding H, Song F, Wang J. J Biomater Sci Polym Ed; 2014 Feb 11; 25(18):2080-93. PubMed ID: 25324120 [Abstract] [Full Text] [Related]
27. Characterization and osteogenic activity of a silicatein/biosilica-coated chitosan-graft-polycaprolactone. Wiens M, Elkhooly TA, Schröder HC, Mohamed TH, Müller WE. Acta Biomater; 2014 Oct 11; 10(10):4456-64. PubMed ID: 24998774 [Abstract] [Full Text] [Related]
29. Construction of microenvironment onto titanium substrates to regulate the osteoblastic differentiation of bone marrow stromal cells in vitro and osteogenesis in vivo. Lai M, Cai K, Hu Y, Zhang Y, Li L, Luo Z, Hou Y, Li J, Ding X, Chen X. J Biomed Mater Res A; 2013 Mar 11; 101(3):653-66. PubMed ID: 22927103 [Abstract] [Full Text] [Related]
30. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT, Martins A, Dias IR, Viegas CA, Neves NM, Gomes ME, Reis RL. J Tissue Eng Regen Med; 2012 Nov 11; 6(10):e24-30. PubMed ID: 22451140 [Abstract] [Full Text] [Related]
31. Preparation of lotus-leaf-like structured blood compatible poly(ε-caprolactone)-block-poly(L-lactic acid) copolymer film surfaces. Kim SI, Lim JI, Lee BR, Mun CH, Jung Y, Kim SH. Colloids Surf B Biointerfaces; 2014 Feb 01; 114():28-35. PubMed ID: 24161503 [Abstract] [Full Text] [Related]
32. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel. Catauro M, Bollino F, Papale F. J Biomed Mater Res A; 2014 Feb 01; 102(2):392-9. PubMed ID: 23533196 [Abstract] [Full Text] [Related]
34. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Rajzer I, Menaszek E, Kwiatkowski R, Planell JA, Castano O. Mater Sci Eng C Mater Biol Appl; 2014 Nov 01; 44():183-90. PubMed ID: 25280695 [Abstract] [Full Text] [Related]
35. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri OM, Schubert DW, Boccaccini AR. J Biomed Mater Res A; 2014 Dec 01; 102(12):4510-8. PubMed ID: 24677705 [Abstract] [Full Text] [Related]
36. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. Nguyen TH, Bao TQ, Park I, Lee BT. J Biomater Appl; 2013 Nov 01; 28(4):514-28. PubMed ID: 23075833 [Abstract] [Full Text] [Related]
37. Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study. Russo L, Russo T, Battocchio C, Taraballi F, Gloria A, D'Amora U, De Santis R, Polzonetti G, Nicotra F, Ambrosio L, Cipolla L. Carbohydr Res; 2015 Mar 20; 405():39-46. PubMed ID: 25498202 [Abstract] [Full Text] [Related]
38. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD. Biomaterials; 2005 Oct 20; 26(30):5960-71. PubMed ID: 15913761 [Abstract] [Full Text] [Related]
39. Formation of bone-like apatite on poly(L-lactic acid) fibers by a biomimetic process. Yuan X, Mak AF, Li J. J Biomed Mater Res; 2001 Oct 20; 57(1):140-50. PubMed ID: 11416861 [Abstract] [Full Text] [Related]
40. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction. Sharma S, Gupta D, Mohanty S, Jassal M, Agrawal AK, Tandon R. Invest Ophthalmol Vis Sci; 2014 Feb 12; 55(2):899-907. PubMed ID: 24425860 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]